1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
use std::vec;
use fj_interop::ext::SliceExt;
use fj_math::Point;
use crate::{geometry::curve::Curve, objects::Face};
use super::CurveEdgeIntersection;
/// The intersections between a curve and a [`Face`], in curve coordinates
#[derive(Clone, Debug, Eq, PartialEq, Hash, Ord, PartialOrd)]
pub struct CurveFaceIntersection {
/// The intervals where the curve and face intersect, in curve coordinates
pub intervals: Vec<CurveFaceIntersectionInterval>,
}
impl CurveFaceIntersection {
/// Create a new instance from the intersection intervals
///
/// This method is useful for test code.
pub fn from_intervals(
intervals: impl IntoIterator<
Item = impl Into<CurveFaceIntersectionInterval>,
>,
) -> Self {
let intervals = intervals.into_iter().map(Into::into).collect();
Self { intervals }
}
/// Compute the intersection
pub fn compute(curve: &Curve, face: &Face) -> Self {
let half_edges = face.all_cycles().flat_map(|cycle| cycle.half_edges());
let mut intersections = Vec::new();
for half_edge in half_edges {
let intersection = CurveEdgeIntersection::compute(curve, half_edge);
if let Some(intersection) = intersection {
match intersection {
CurveEdgeIntersection::Point { point_on_curve } => {
intersections.push(point_on_curve);
}
CurveEdgeIntersection::Coincident { points_on_curve } => {
intersections.extend(points_on_curve);
}
}
}
}
assert!(intersections.len() % 2 == 0);
intersections.sort();
let intervals = intersections
.as_slice()
.array_chunks_ext()
.map(|&[start, end]| CurveFaceIntersectionInterval { start, end })
.collect();
Self { intervals }
}
/// Merge this intersection list with another
///
/// The merged list will contain all overlaps of the intervals from the two
/// other lists.
pub fn merge(&self, other: &Self) -> Self {
let mut self_intervals = self.intervals.iter().copied();
let mut other_interval = other.intervals.iter().copied();
let mut next_self = self_intervals.next();
let mut next_other = other_interval.next();
let mut intervals = Vec::new();
while let (Some(self_), Some(other)) = (next_self, next_other) {
// If we're starting another loop iteration, we have another
// interval available from both `self` and `other` each. Only if
// that's the case, is there a chance for an overlap.
// Build the overlap of the two next intervals, by comparing them.
// At this point we don't know yet, if this is a valid interval.
let overlap_start = self_.start.max(other.start);
let overlap_end = self_.end.min(other.end);
if overlap_start < overlap_end {
// This is indeed a valid overlap. Add it to our list of
// results.
intervals.push(CurveFaceIntersectionInterval {
start: overlap_start,
end: overlap_end,
});
}
// Only if the end of the overlap interval has overtaken one of the
// input ones are we done with it. An input interval that hasn't
// been overtaken by the overlap, could still overlap with another
// interval.
if self_.end <= overlap_end {
// Current interval from `self` has been overtaken. Let's grab
// the next one.
next_self = self_intervals.next();
}
if other.end <= overlap_end {
// Current interval from `other` has been overtaken. Let's grab
// the next one.
next_other = other_interval.next();
}
}
Self { intervals }
}
/// Indicate whether the intersection list is empty
pub fn is_empty(&self) -> bool {
self.intervals.is_empty()
}
}
impl IntoIterator for CurveFaceIntersection {
type Item = CurveFaceIntersectionInterval;
type IntoIter = vec::IntoIter<Self::Item>;
fn into_iter(self) -> Self::IntoIter {
self.intervals.into_iter()
}
}
/// An intersection between a curve and a face
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash, Ord, PartialOrd)]
pub struct CurveFaceIntersectionInterval {
/// The start of the intersection interval, in curve coordinates
pub start: Point<1>,
/// The end of the intersection interval, in curve coordinates
pub end: Point<1>,
}
impl<P> From<[P; 2]> for CurveFaceIntersectionInterval
where
P: Into<Point<1>>,
{
fn from(interval: [P; 2]) -> Self {
let [start, end] = interval.map(Into::into);
Self { start, end }
}
}
#[cfg(test)]
mod tests {
use crate::{
builder::{CycleBuilder, FaceBuilder},
geometry::curve::Curve,
services::Services,
};
use super::CurveFaceIntersection;
#[test]
fn compute() {
let mut services = Services::new();
let (curve, _) = Curve::line_from_points([[-3., 0.], [-2., 0.]]);
#[rustfmt::skip]
let exterior_points = [
[-2., -2.],
[ 2., -2.],
[ 2., 2.],
[-2., 2.],
];
#[rustfmt::skip]
let interior_points = [
[-1., -1.],
[-1., 1.],
[ 1., 1.],
[ 1., -1.],
];
let face = FaceBuilder::new(services.objects.surfaces.xy_plane())
.with_exterior(CycleBuilder::polygon(
exterior_points,
&mut services.objects,
))
.with_interior(CycleBuilder::polygon(
interior_points,
&mut services.objects,
))
.build(&mut services.objects);
let expected =
CurveFaceIntersection::from_intervals([[[1.], [2.]], [[4.], [5.]]]);
assert_eq!(CurveFaceIntersection::compute(&curve, &face), expected);
}
#[test]
fn merge() {
let a = CurveFaceIntersection::from_intervals([
[[0.], [1.]], // 1: `a` and `b` are equal
[[2.], [5.]], // 2: `a` contains `b`
[[7.], [8.]], // 3: `b` contains `a`
[[9.], [11.]], // 4: overlap; `a` is left
[[14.], [16.]], // 5: overlap; `a` is right
[[18.], [21.]], // 6: one of `a` partially overlaps two of `b`
[[23.], [25.]], // 7: two of `a` partially overlap one of `b`
[[26.], [28.]], // 7
[[31.], [35.]], // 8: partial/complete: one of `a`, two of `b`;
[[36.], [38.]], // 9: partial/complete: two of `a`, one of `b`
[[39.], [40.]], // 9
[[41.], [45.]], // 10: complete/partial: one of `a`, two of `b`
[[48.], [49.]], // 11: complete/partial: two of `a`, one of `b`
[[50.], [52.]], // 11
[[53.], [58.]], // 12: one of `a` overlaps two of `b` completely
[[60.], [61.]], // 13: one of `b` overlaps two of `a` completely
[[62.], [63.]], // 13
[[65.], [66.]], // 14: one of `a` with no overlap in `b`
]);
let b = CurveFaceIntersection::from_intervals([
[[0.], [1.]], // 1
[[3.], [4.]], // 2
[[6.], [9.]], // 3
[[10.], [12.]], // 4
[[13.], [15.]], // 5
[[17.], [19.]], // 6
[[20.], [22.]], // 6
[[24.], [27.]], // 7
[[30.], [32.]], // 8
[[33.], [34.]], // 8
[[37.], [41.]], // 9
[[42.], [43.]], // 10
[[44.], [46.]], // 10
[[47.], [51.]], // 11
[[54.], [55.]], // 12
[[56.], [57.]], // 12
[[59.], [64.]], // 13
]);
let merged = a.merge(&b);
let expected = CurveFaceIntersection::from_intervals([
[[0.], [1.]], // 1
[[3.], [4.]], // 2
[[7.], [8.]], // 3
[[10.], [11.]], // 4
[[14.], [15.]], // 5
[[18.], [19.]], // 6
[[20.], [21.]], // 6
[[24.], [25.]], // 7
[[26.], [27.]], // 7
[[31.], [32.]], // 8
[[33.], [34.]], // 8
[[37.], [38.]], // 9
[[39.], [40.]], // 9
[[42.], [43.]], // 10
[[44.], [45.]], // 10
[[48.], [49.]], // 11
[[50.], [51.]], // 11
[[54.], [55.]], // 12
[[56.], [57.]], // 12
[[60.], [61.]], // 13
[[62.], [63.]], // 13
]);
assert_eq!(merged, expected);
}
}