1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
//! # Path approximation
//!
//! Since paths are infinite (even circles have an infinite coordinate space,
//! even though they connect to themselves in global coordinates), a range must
//! be provided to approximate them. The approximation then returns points
//! within that range.
//!
//! The boundaries of the range are not included in the approximation. This is
//! done, to give the caller (who knows the boundary anyway) more options on how
//! to further process the approximation.
//!
//! ## Determinism
//!
//! Path approximation is carefully designed to produce a deterministic result
//! for the combination of a given path and a given tolerance, regardless of
//! what the range is. This is done to prevent invalid meshes from being
//! generated.
//!
//! In specific terms, this means there is an infinite set of points that
//! approximates a path, and that set is deterministic for a given combination
//! of path and tolerance. The range that defines where the path is approximated
//! only influences the result in two ways:
//!
//! 1. It controls which points from the infinite set are actually computed.
//! 2. It defines the order in which the computed points are returned.
//!
//! As a result, path approximation is guaranteed to generate points that can
//! fit together in a valid mesh, no matter which ranges of a path are being
//! approximated, and how many times.
use std::iter;
use fj_math::{Circle, Point, Scalar, Sign};
use crate::geometry::curve::{Curve, GlobalPath};
use super::{Approx, Tolerance};
impl Approx for (&Curve, RangeOnPath) {
type Approximation = Vec<(Point<1>, Point<2>)>;
type Cache = ();
fn approx_with_cache(
self,
tolerance: impl Into<Tolerance>,
(): &mut Self::Cache,
) -> Self::Approximation {
let (path, range) = self;
match path {
Curve::Circle(circle) => {
approx_circle(circle, range, tolerance.into())
}
Curve::Line(_) => vec![],
}
}
}
impl Approx for (GlobalPath, RangeOnPath) {
type Approximation = Vec<(Point<1>, Point<3>)>;
type Cache = ();
fn approx_with_cache(
self,
tolerance: impl Into<Tolerance>,
(): &mut Self::Cache,
) -> Self::Approximation {
let (path, range) = self;
match path {
GlobalPath::Circle(circle) => {
approx_circle(&circle, range, tolerance.into())
}
GlobalPath::Line(_) => vec![],
}
}
}
/// The range on which a path should be approximated
#[derive(Clone, Copy, Debug, Eq, PartialEq, Ord, PartialOrd)]
pub struct RangeOnPath {
/// The boundary of the range
pub boundary: [Point<1>; 2],
}
impl RangeOnPath {
/// Reverse the direction of the range
pub fn reverse(self) -> Self {
let [a, b] = self.boundary;
Self { boundary: [b, a] }
}
}
impl<T> From<[T; 2]> for RangeOnPath
where
T: Into<Point<1>>,
{
fn from(boundary: [T; 2]) -> Self {
let boundary = boundary.map(Into::into);
Self { boundary }
}
}
/// Approximate a circle
///
/// `tolerance` specifies how much the approximation is allowed to deviate
/// from the circle.
fn approx_circle<const D: usize>(
circle: &Circle<D>,
range: impl Into<RangeOnPath>,
tolerance: Tolerance,
) -> Vec<(Point<1>, Point<D>)> {
let range = range.into();
let params = PathApproxParams::for_circle(circle, tolerance);
let mut points = Vec::new();
for point_curve in params.points(range) {
let point_global = circle.point_from_circle_coords(point_curve);
points.push((point_curve, point_global));
}
points
}
struct PathApproxParams {
increment: Scalar,
}
impl PathApproxParams {
pub fn for_circle<const D: usize>(
circle: &Circle<D>,
tolerance: impl Into<Tolerance>,
) -> Self {
let radius = circle.a().magnitude();
let num_vertices_to_approx_full_circle = Scalar::max(
Scalar::PI
/ (Scalar::ONE - (tolerance.into().inner() / radius)).acos(),
3.,
)
.ceil();
let increment = Scalar::TAU / num_vertices_to_approx_full_circle;
Self { increment }
}
pub fn increment(&self) -> Scalar {
self.increment
}
pub fn points(
&self,
range: impl Into<RangeOnPath>,
) -> impl Iterator<Item = Point<1>> + '_ {
let range = range.into();
let [a, b] = range.boundary.map(|point| point.t / self.increment());
let direction = (b - a).sign();
let [min, max] = if a < b { [a, b] } else { [b, a] };
// We can't generate a point exactly at the boundaries of the range as
// part of the approximation. Make sure we stay inside the range.
let min = min.floor() + 1.;
let max = max.ceil() - 1.;
let [start, end] = match direction {
Sign::Negative => [max, min],
Sign::Positive | Sign::Zero => [min, max],
};
let mut i = start;
iter::from_fn(move || {
let is_finished = match direction {
Sign::Negative => i < end,
Sign::Positive | Sign::Zero => i > end,
};
if is_finished {
return None;
}
let t = self.increment() * i;
i += direction.to_scalar();
Some(Point::from([t]))
})
}
}
#[cfg(test)]
mod tests {
use std::f64::consts::TAU;
use fj_math::{Circle, Point, Scalar};
use crate::algorithms::approx::{path::RangeOnPath, Tolerance};
use super::PathApproxParams;
#[test]
fn increment_for_circle() {
test_increment(1., 0.5, 3.);
test_increment(1., 0.1, 7.);
test_increment(1., 0.01, 23.);
fn test_increment(
radius: impl Into<Scalar>,
tolerance: impl Into<Tolerance>,
expected_num_vertices: impl Into<Scalar>,
) {
let circle = Circle::from_center_and_radius([0., 0.], radius);
let params = PathApproxParams::for_circle(&circle, tolerance);
let expected_increment = Scalar::TAU / expected_num_vertices;
assert_eq!(params.increment(), expected_increment);
}
}
#[test]
fn points_for_circle() {
// At the chosen values for radius and tolerance (see below), the
// increment is `PI / 4`, so ~1.57.
// Empty range
let empty: [Scalar; 0] = [];
test_path([[0.], [0.]], empty);
// Ranges contain all generated points. Start is before the first
// increment and after the last one in each case.
test_path([[0.], [TAU]], [1., 2., 3.]);
test_path([[1.], [TAU]], [1., 2., 3.]);
test_path([[0.], [TAU - 1.]], [1., 2., 3.]);
// Here the range is restricted to cut of the first or last increment.
test_path([[2.], [TAU]], [2., 3.]);
test_path([[0.], [TAU - 2.]], [1., 2.]);
// And everything again, but in reverse.
test_path([[TAU], [0.]], [3., 2., 1.]);
test_path([[TAU], [1.]], [3., 2., 1.]);
test_path([[TAU - 1.], [0.]], [3., 2., 1.]);
test_path([[TAU], [2.]], [3., 2.]);
test_path([[TAU - 2.], [0.]], [2., 1.]);
fn test_path(
range: impl Into<RangeOnPath>,
expected_coords: impl IntoIterator<Item = impl Into<Scalar>>,
) {
// Choose radius and tolerance such, that we need 4 vertices to
// approximate a full circle. This is the lowest number that we can
// still cover all the edge cases with
let radius = 1.;
let tolerance = 0.375;
let circle = Circle::from_center_and_radius([0., 0.], radius);
let params = PathApproxParams::for_circle(&circle, tolerance);
let points = params.points(range).collect::<Vec<_>>();
let expected_points = expected_coords
.into_iter()
.map(|i| Point::from([params.increment() * i]))
.collect::<Vec<_>>();
assert_eq!(points, expected_points);
}
}
}