1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
//! Edge approximation
//!
//! The approximation of a curve is its first vertex, combined with the
//! approximation of its curve. The second vertex is left off, as edge
//! approximations are usually used to build cycle approximations, and this way,
//! the caller doesn't have to call with duplicate vertices.

use std::collections::BTreeMap;

use fj_math::Point;

use crate::{
    geometry::curve::{Curve, GlobalPath},
    objects::{GlobalEdge, HalfEdge, Surface, Vertex},
    storage::{Handle, ObjectId},
};

use super::{path::RangeOnPath, Approx, ApproxPoint, Tolerance};

impl Approx for (&HalfEdge, &Surface) {
    type Approximation = HalfEdgeApprox;
    type Cache = EdgeCache;

    fn approx_with_cache(
        self,
        tolerance: impl Into<Tolerance>,
        cache: &mut Self::Cache,
    ) -> Self::Approximation {
        let (half_edge, surface) = self;

        let boundary = half_edge.boundary();
        let range = RangeOnPath { boundary };

        let position_surface = half_edge.start_position();
        let position_global = match cache.get_position(half_edge.start_vertex())
        {
            Some(position) => position,
            None => {
                let position_global = surface
                    .geometry()
                    .point_from_surface_coords(position_surface);
                cache.insert_position(half_edge.start_vertex(), position_global)
            }
        };

        let first = ApproxPoint::new(position_surface, position_global);

        let points = {
            let approx =
                match cache.get_edge(half_edge.global_form().clone(), range) {
                    Some(approx) => approx,
                    None => {
                        let approx = approx_edge(
                            &half_edge.curve(),
                            surface,
                            range,
                            tolerance,
                        );
                        cache.insert_edge(
                            half_edge.global_form().clone(),
                            range,
                            approx,
                        )
                    }
                };

            approx
                .points
                .into_iter()
                .map(|point| {
                    let point_surface = half_edge
                        .curve()
                        .point_from_path_coords(point.local_form);

                    ApproxPoint::new(point_surface, point.global_form)
                })
                .collect()
        };

        HalfEdgeApprox { first, points }
    }
}

/// An approximation of an [`HalfEdge`]
#[derive(Debug, Eq, PartialEq, Hash, Ord, PartialOrd)]
pub struct HalfEdgeApprox {
    /// The point that approximates the first vertex of the edge
    pub first: ApproxPoint<2>,

    /// The approximation of the edge
    pub points: Vec<ApproxPoint<2>>,
}

impl HalfEdgeApprox {
    /// Compute the points that approximate the edge
    pub fn points(&self) -> Vec<ApproxPoint<2>> {
        let mut points = Vec::new();

        points.push(self.first.clone());
        points.extend(self.points.iter().cloned());

        points
    }
}

fn approx_edge(
    curve: &Curve,
    surface: &Surface,
    range: RangeOnPath,
    tolerance: impl Into<Tolerance>,
) -> GlobalEdgeApprox {
    // There are different cases of varying complexity. Circles are the hard
    // part here, as they need to be approximated, while lines don't need to be.
    //
    // This will probably all be unified eventually, as `SurfacePath` and
    // `GlobalPath` grow APIs that are better suited to implementing this code
    // in a more abstract way.
    let points = match (curve, surface.geometry().u) {
        (Curve::Circle(_), GlobalPath::Circle(_)) => {
            todo!(
                "Approximating a circle on a curved surface not supported yet."
            )
        }
        (Curve::Circle(_), GlobalPath::Line(_)) => {
            (curve, range)
                .approx_with_cache(tolerance, &mut ())
                .into_iter()
                .map(|(point_curve, point_surface)| {
                    // We're throwing away `point_surface` here, which is a bit
                    // weird, as we're recomputing it later (outside of this
                    // function).
                    //
                    // It should be fine though:
                    //
                    // 1. We're throwing this version away, so there's no danger
                    //    of inconsistency between this and the later version.
                    // 2. This version should have been computed using the same
                    //    path and parameters and the later version will be, so
                    //    they should be the same anyway.
                    // 3. Not all other cases handled in this function have a
                    //    surface point available, so it needs to be computed
                    //    later anyway, in the general case.

                    let point_global = surface
                        .geometry()
                        .point_from_surface_coords(point_surface);
                    (point_curve, point_global)
                })
                .collect()
        }
        (Curve::Line(line), _) => {
            let range_u =
                RangeOnPath::from(range.boundary.map(|point_curve| {
                    [curve.point_from_path_coords(point_curve).u]
                }));

            let approx_u = (surface.geometry().u, range_u)
                .approx_with_cache(tolerance, &mut ());

            let mut points = Vec::new();
            for (u, _) in approx_u {
                let t = (u.t - line.origin().u) / line.direction().u;
                let point_surface = curve.point_from_path_coords([t]);
                let point_global =
                    surface.geometry().point_from_surface_coords(point_surface);
                points.push((u, point_global));
            }

            points
        }
    };

    let points = points
        .into_iter()
        .map(|(point_curve, point_global)| {
            ApproxPoint::new(point_curve, point_global)
        })
        .collect();
    GlobalEdgeApprox { points }
}

/// A cache for results of an approximation
#[derive(Default)]
pub struct EdgeCache {
    edge_approx: BTreeMap<(ObjectId, RangeOnPath), GlobalEdgeApprox>,
    vertex_approx: BTreeMap<ObjectId, Point<3>>,
}

impl EdgeCache {
    /// Create an empty cache
    pub fn new() -> Self {
        Self::default()
    }

    /// Access the approximation for the given [`GlobalEdge`], if available
    pub fn get_edge(
        &self,
        handle: Handle<GlobalEdge>,
        range: RangeOnPath,
    ) -> Option<GlobalEdgeApprox> {
        if let Some(approx) = self.edge_approx.get(&(handle.id(), range)) {
            return Some(approx.clone());
        }
        if let Some(approx) =
            self.edge_approx.get(&(handle.id(), range.reverse()))
        {
            // If we have a cache entry for the reverse range, we need to use
            // that too!
            return Some(approx.clone().reverse());
        }

        None
    }

    /// Insert the approximation of a [`GlobalEdge`]
    pub fn insert_edge(
        &mut self,
        handle: Handle<GlobalEdge>,
        range: RangeOnPath,
        approx: GlobalEdgeApprox,
    ) -> GlobalEdgeApprox {
        self.edge_approx
            .insert((handle.id(), range), approx.clone())
            .unwrap_or(approx)
    }

    fn get_position(&self, handle: &Handle<Vertex>) -> Option<Point<3>> {
        self.vertex_approx.get(&handle.id()).cloned()
    }

    fn insert_position(
        &mut self,
        handle: &Handle<Vertex>,
        position: Point<3>,
    ) -> Point<3> {
        self.vertex_approx
            .insert(handle.id(), position)
            .unwrap_or(position)
    }
}

/// An approximation of a [`GlobalEdge`]
#[derive(Clone, Debug, Eq, PartialEq, Hash, Ord, PartialOrd)]
pub struct GlobalEdgeApprox {
    /// The points that approximate the edge
    pub points: Vec<ApproxPoint<1>>,
}

impl GlobalEdgeApprox {
    /// Reverse the order of the approximation
    pub fn reverse(mut self) -> Self {
        self.points.reverse();
        self
    }
}

#[cfg(test)]
mod tests {
    use std::{f64::consts::TAU, ops::Deref};

    use pretty_assertions::assert_eq;

    use crate::{
        algorithms::approx::{path::RangeOnPath, Approx, ApproxPoint},
        geometry::{curve::GlobalPath, surface::SurfaceGeometry},
        objects::{HalfEdge, Surface},
        operations::{BuildHalfEdge, Insert},
        services::Services,
    };

    #[test]
    fn approx_line_on_flat_surface() {
        let mut services = Services::new();

        let surface = services.objects.surfaces.xz_plane();
        let half_edge = HalfEdge::line_segment(
            [[1., 1.], [2., 1.]],
            None,
            &mut services.objects,
        );

        let tolerance = 1.;
        let approx = (&half_edge, surface.deref()).approx(tolerance);

        assert_eq!(approx.points, Vec::new());
    }

    #[test]
    fn approx_line_on_curved_surface_but_not_along_curve() {
        let mut services = Services::new();

        let surface = Surface::new(SurfaceGeometry {
            u: GlobalPath::circle_from_radius(1.),
            v: [0., 0., 1.].into(),
        })
        .insert(&mut services.objects);
        let half_edge = HalfEdge::line_segment(
            [[1., 1.], [2., 1.]],
            None,
            &mut services.objects,
        );

        let tolerance = 1.;
        let approx = (&half_edge, surface.deref()).approx(tolerance);

        assert_eq!(approx.points, Vec::new());
    }

    #[test]
    fn approx_line_on_curved_surface_along_curve() {
        let mut services = Services::new();

        let path = GlobalPath::circle_from_radius(1.);
        let range = RangeOnPath::from([[0.], [TAU]]);

        let surface = Surface::new(SurfaceGeometry {
            u: path,
            v: [0., 0., 1.].into(),
        })
        .insert(&mut services.objects);
        let half_edge = HalfEdge::line_segment(
            [[0., 1.], [TAU, 1.]],
            Some(range.boundary),
            &mut services.objects,
        );

        let tolerance = 1.;
        let approx = (&half_edge, surface.deref()).approx(tolerance);

        let expected_approx = (path, range)
            .approx(tolerance)
            .into_iter()
            .map(|(point_local, _)| {
                let point_surface =
                    half_edge.curve().point_from_path_coords(point_local);
                let point_global =
                    surface.geometry().point_from_surface_coords(point_surface);
                ApproxPoint::new(point_surface, point_global)
            })
            .collect::<Vec<_>>();
        assert_eq!(approx.points, expected_approx);
    }

    #[test]
    fn approx_circle_on_flat_surface() {
        let mut services = Services::new();

        let surface = services.objects.surfaces.xz_plane();
        let half_edge = HalfEdge::circle(1., &mut services.objects);

        let tolerance = 1.;
        let approx = (&half_edge, surface.deref()).approx(tolerance);

        let expected_approx =
            (&half_edge.curve(), RangeOnPath::from([[0.], [TAU]]))
                .approx(tolerance)
                .into_iter()
                .map(|(_, point_surface)| {
                    let point_global = surface
                        .geometry()
                        .point_from_surface_coords(point_surface);
                    ApproxPoint::new(point_surface, point_global)
                })
                .collect::<Vec<_>>();
        assert_eq!(approx.points, expected_approx);
    }
}