1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
use std::collections::{btree_set, BTreeSet};
use fj_interop::mesh::Color;
use fj_math::Winding;
use crate::{
objects::{Cycle, Surface},
storage::Handle,
};
/// A face of a shape
///
/// A `Face` is a bounded area of a [`Surface`], the [`Surface`] itself being an
/// infinite 2-dimensional object in 3D space. `Face`s are bound by one exterior
/// cycle, which defines the outer boundary, and an arbitrary number of interior
/// cycles (i.e. holes).
///
/// `Face` has a defined orientation, a front and a back side. When faces are
/// combined into [`Shell`]s, the face orientation defines what is inside and
/// outside of the shell. This stands in contrast to [`Surface`], which has no
/// defined orientation.
///
/// You can look at a `Face` from two directions: front and back. The winding of
/// the exterior cycle will be clockwise or counter-clockwise, depending on your
/// perspective. The front side of the face, is the side where from which the
/// exterior cycle appear counter-clockwise.
///
/// Interior cycles must have the opposite winding of the exterior cycle,
/// meaning on the front side of the face, they must appear clockwise. This
/// means that all [`HalfEdge`]s that bound a `Face` have the interior of the
/// face on their left side (on the face's front side).
///
/// [`HalfEdge`]: crate::objects::HalfEdge
/// [`Shell`]: crate::objects::Shell
#[derive(Clone, Debug, Eq, PartialEq, Hash, Ord, PartialOrd)]
pub struct Face {
surface: Handle<Surface>,
exterior: Handle<Cycle>,
interiors: Vec<Handle<Cycle>>,
color: Option<Color>,
}
impl Face {
/// Construct an instance of `Face`
pub fn new(
surface: Handle<Surface>,
exterior: Handle<Cycle>,
interiors: impl IntoIterator<Item = Handle<Cycle>>,
color: Option<Color>,
) -> Self {
let interiors = interiors.into_iter().collect();
Self {
surface,
exterior,
interiors,
color,
}
}
/// Access the surface of the face
pub fn surface(&self) -> &Handle<Surface> {
&self.surface
}
/// Access the cycle that bounds the face on the outside
pub fn exterior(&self) -> &Handle<Cycle> {
&self.exterior
}
/// Access the cycles that bound the face on the inside
///
/// Each of these cycles defines a hole in the face.
pub fn interiors(&self) -> impl Iterator<Item = &Handle<Cycle>> + '_ {
self.interiors.iter()
}
/// Access all cycles of the face (both exterior and interior)
pub fn all_cycles(&self) -> impl Iterator<Item = &Handle<Cycle>> + '_ {
[self.exterior()].into_iter().chain(self.interiors())
}
/// Access the color of the face
pub fn color(&self) -> Option<Color> {
self.color
}
/// Determine handed-ness of the face's front-side coordinate system
///
/// A face is defined on a surface, which has a coordinate system. Since
/// surfaces aren't considered to have an orientation, their coordinate
/// system can be considered to be left-handed or right-handed, depending on
/// which side of the surface you're looking at.
///
/// Faces *do* have an orientation, meaning they have definite front and
/// back sides. The front side is the side, where the face's exterior cycle
/// is wound counter-clockwise.
pub fn coord_handedness(&self) -> Handedness {
match self.exterior().winding() {
Winding::Ccw => Handedness::RightHanded,
Winding::Cw => Handedness::LeftHanded,
}
}
}
/// A collection of faces
#[derive(Clone, Debug, Default, Eq, PartialEq, Hash, Ord, PartialOrd)]
pub struct FaceSet {
inner: BTreeSet<Handle<Face>>,
}
impl FaceSet {
/// Create an empty instance of `Faces`
pub fn new() -> Self {
Self::default()
}
/// Find the given face
pub fn find(&self, face: &Handle<Face>) -> Option<Handle<Face>> {
for f in self {
if f == face {
return Some(f.clone());
}
}
None
}
}
impl Extend<Handle<Face>> for FaceSet {
fn extend<T: IntoIterator<Item = Handle<Face>>>(&mut self, iter: T) {
self.inner.extend(iter);
}
}
impl FromIterator<Handle<Face>> for FaceSet {
fn from_iter<T: IntoIterator<Item = Handle<Face>>>(iter: T) -> Self {
let mut faces = Self::new();
faces.extend(iter);
faces
}
}
impl IntoIterator for FaceSet {
type Item = Handle<Face>;
type IntoIter = btree_set::IntoIter<Handle<Face>>;
fn into_iter(self) -> Self::IntoIter {
self.inner.into_iter()
}
}
impl<'a> IntoIterator for &'a FaceSet {
type Item = &'a Handle<Face>;
type IntoIter = btree_set::Iter<'a, Handle<Face>>;
fn into_iter(self) -> Self::IntoIter {
self.inner.iter()
}
}
/// The handedness of a face's coordinate system
///
/// See [`Face::coord_handedness`].
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash, Ord, PartialOrd)]
pub enum Handedness {
/// The face's coordinate system is left-handed
LeftHanded,
/// The face's coordinate system is right-handed
RightHanded,
}