1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
use fj_interop::ext::ArrayExt;
use fj_math::{Point, Scalar};
use crate::{
geometry::path::{GlobalPath, SurfacePath},
objects::{GlobalEdge, HalfEdge, Surface},
partial::{MaybeSurfacePath, Partial, PartialGlobalEdge, PartialHalfEdge},
};
use super::CurveBuilder;
/// Builder API for [`PartialHalfEdge`]
pub trait HalfEdgeBuilder {
/// Completely replace the surface in this half-edge's object graph
///
/// Please note that this operation will write to both vertices that the
/// half-edge references. If any of them were created from full objects,
/// this will break the connection to those, meaning that building the
/// partial objects won't result in those full objects again. This will be
/// the case, even if those full objects already referenced the provided
/// surface.
fn replace_surface(&mut self, surface: impl Into<Partial<Surface>>);
/// Update partial half-edge to be a circle, from the given radius
fn update_as_circle_from_radius(&mut self, radius: impl Into<Scalar>);
/// Update partial half-edge to be an arc, spanning the given angle in
/// radians
///
/// # Panics
///
/// Panics if the given angle is not within the range (-2pi, 2pi) radians.
fn update_as_arc(&mut self, angle_rad: impl Into<Scalar>);
/// Update partial half-edge to be a line segment, from the given points
fn update_as_line_segment_from_points(
&mut self,
surface: impl Into<Partial<Surface>>,
points: [impl Into<Point<2>>; 2],
);
/// Update partial half-edge to be a line segment
fn update_as_line_segment(&mut self);
/// Infer the global form of the half-edge
///
/// Updates the global form referenced by this half-edge, and also returns
/// it.
fn infer_global_form(&mut self) -> Partial<GlobalEdge>;
/// Update this edge from another
///
/// Infers as much information about this edge from the other, under the
/// assumption that the other edge is on a different surface.
///
/// This method is quite fragile. It might panic, or even silently fail,
/// under various circumstances. As long as you're only dealing with lines
/// and planes, you should be fine. Otherwise, please read the code of this
/// method carefully, to make sure you don't run into trouble.
fn update_from_other_edge(&mut self, other: &Partial<HalfEdge>);
}
impl HalfEdgeBuilder for PartialHalfEdge {
fn replace_surface(&mut self, surface: impl Into<Partial<Surface>>) {
let surface = surface.into();
self.curve.write().surface = surface.clone();
for vertex in &mut self.vertices {
vertex.1.write().surface = surface.clone();
}
}
fn update_as_circle_from_radius(&mut self, radius: impl Into<Scalar>) {
let path = self.curve.write().update_as_circle_from_radius(radius);
let [a_curve, b_curve] =
[Scalar::ZERO, Scalar::TAU].map(|coord| Point::from([coord]));
let mut surface_vertex = {
let [vertex, _] = &mut self.vertices;
vertex.1.clone()
};
surface_vertex.write().position =
Some(path.point_from_path_coords(a_curve));
for (vertex, point_curve) in
self.vertices.each_mut_ext().zip_ext([a_curve, b_curve])
{
let mut vertex = vertex;
vertex.0 = Some(point_curve);
vertex.1 = surface_vertex.clone();
}
self.infer_global_form();
}
fn update_as_arc(&mut self, angle_rad: impl Into<Scalar>) {
let angle_rad = angle_rad.into();
if angle_rad <= -Scalar::TAU || angle_rad >= Scalar::TAU {
panic!("arc angle must be in the range (-2pi, 2pi) radians");
}
let points_surface = self.vertices.each_ref_ext().map(|vertex| {
vertex
.1
.read()
.position
.expect("Can't infer arc without surface position")
});
let arc = fj_math::Arc::from_endpoints_and_angle(
points_surface[0],
points_surface[1],
angle_rad,
);
let path = self
.curve
.write()
.update_as_circle_from_center_and_radius(arc.center, arc.radius);
let [a_curve, b_curve] = if arc.flipped_construction {
[arc.end_angle, arc.start_angle]
} else {
[arc.start_angle, arc.end_angle]
}
.map(|coord| Point::from([coord]));
for (vertex, point_curve) in
self.vertices.each_mut_ext().zip_ext([a_curve, b_curve])
{
vertex.0 = Some(point_curve);
vertex.1.write().position =
Some(path.point_from_path_coords(point_curve));
}
self.infer_global_form();
}
fn update_as_line_segment_from_points(
&mut self,
surface: impl Into<Partial<Surface>>,
points: [impl Into<Point<2>>; 2],
) {
let surface = surface.into();
self.curve.write().surface = surface.clone();
for (vertex, point) in self.vertices.each_mut_ext().zip_ext(points) {
let mut surface_form = vertex.1.write();
surface_form.position = Some(point.into());
surface_form.surface = surface.clone();
}
self.update_as_line_segment()
}
fn update_as_line_segment(&mut self) {
let boundary = self.vertices.each_ref_ext().map(|vertex| vertex.0);
let points_surface = self.vertices.each_ref_ext().map(|vertex| {
vertex
.1
.read()
.position
.expect("Can't infer line segment without surface position")
});
if let [Some(start), Some(end)] = boundary {
let boundary = [start, end];
self.curve
.write()
.update_as_line_from_points_with_line_coords(
boundary.zip_ext(points_surface),
);
} else {
self.curve
.write()
.update_as_line_from_points(points_surface);
for (vertex, position) in
self.vertices.each_mut_ext().zip_ext([0., 1.])
{
vertex.0 = Some([position].into());
}
}
self.infer_global_form();
}
fn infer_global_form(&mut self) -> Partial<GlobalEdge> {
self.global_form.write().curve = self.curve.read().global_form.clone();
self.global_form.write().vertices = self
.vertices
.each_ref_ext()
.map(|vertex| vertex.1.read().global_form.clone());
self.global_form.clone()
}
fn update_from_other_edge(&mut self, other: &Partial<HalfEdge>) {
let global_curve = other.read().curve.read().global_form.clone();
self.curve.write().global_form = global_curve.clone();
self.global_form.write().curve = global_curve;
self.curve.write().path =
other.read().curve.read().path.as_ref().and_then(|path| {
match other.read().curve.read().surface.read().geometry {
Some(surface) => {
// We have information about the other edge's surface
// available. We need to use that to interpret what the
// other edge's curve path means for our curve path.
match surface.u {
GlobalPath::Circle(circle) => {
// The other surface is curved. We're entering
// some dodgy territory here, as only some edge
// cases can be represented using our current
// curve/surface representation.
match path {
MaybeSurfacePath::Defined(
SurfacePath::Line(_),
)
| MaybeSurfacePath::UndefinedLine => {
// We're dealing with a line on a
// rounded surface.
//
// Based on the current uses of this
// method, we can make some assumptions:
//
// 1. The line is parallel to the u-axis
// of the other surface.
// 2. The surface that *our* edge is in
// is a plane that is parallel to the
// the plane of the circle that
// defines the curvature of the other
// surface.
//
// These assumptions are necessary
// preconditions for the following code
// to work. But unfortunately, I see no
// way to check those preconditions
// here, as neither the other line nor
// our surface is necessarily defined
// yet.
//
// Handling this case anyway feels like
// a grave sin, but I don't know what
// else to do. If you tracked some
// extremely subtle and annoying bug
// back to this code, I apologize.
//
// I hope that I'll come up with a
// better curve/surface representation
// before this becomes a problem.
Some(
MaybeSurfacePath::UndefinedCircle {
radius: circle.radius(),
},
)
}
_ => {
// The other edge is a line segment in a
// curved surface. No idea how to deal
// with this.
todo!(
"Can't connect edge to circle on \
curved surface"
)
}
}
}
GlobalPath::Line(_) => {
// The other edge is defined on a plane.
match path {
MaybeSurfacePath::Defined(
SurfacePath::Line(_),
)
| MaybeSurfacePath::UndefinedLine => {
// The other edge is a line segment on
// a plane. That means our edge must be
// a line segment too.
Some(MaybeSurfacePath::UndefinedLine)
}
_ => {
// The other edge is a circle or arc on
// a plane. I'm actually not sure what
// that means for our edge. We might be
// able to represent it somehow, but
// let's leave that as an exercise for
// later.
todo!(
"Can't connect edge to circle on \
plane"
)
}
}
}
}
}
None => {
// We know nothing about the surface the other edge is
// on. This means we can't infer anything about our
// curve from the other curve.
None
}
}
});
for (this, other) in self
.vertices
.iter_mut()
.zip(other.read().vertices.iter().rev())
{
this.1.write().global_form.write().position =
other.1.read().global_form.read().position;
}
}
}
/// Builder API for [`PartialGlobalEdge`]
pub trait GlobalEdgeBuilder {
// No methods are currently defined. This trait serves as a placeholder, to
// make it clear where to add such methods, once necessary.
}
impl GlobalEdgeBuilder for PartialGlobalEdge {}