1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
use std::vec;

use fj_interop::ext::SliceExt;
use fj_math::Point;

use crate::objects::{Curve, Face};

use super::CurveEdgeIntersection;

/// The intersections between a [`Curve`] and a [`Face`], in curve coordinates
#[derive(Clone, Debug, Eq, PartialEq, Hash, Ord, PartialOrd)]
pub struct CurveFaceIntersection {
    /// The intervals where the curve and face intersect, in curve coordinates
    pub intervals: Vec<CurveFaceIntersectionInterval>,
}

impl CurveFaceIntersection {
    /// Create a new instance from the intersection intervals
    ///
    /// This method is useful for test code.
    pub fn from_intervals(
        intervals: impl IntoIterator<
            Item = impl Into<CurveFaceIntersectionInterval>,
        >,
    ) -> Self {
        let intervals = intervals.into_iter().map(Into::into).collect();
        Self { intervals }
    }

    /// Compute the intersections between a [`Curve`] and a [`Face`]
    pub fn compute(curve: &Curve, face: &Face) -> Self {
        let half_edges = face.all_cycles().flat_map(|cycle| cycle.half_edges());

        let mut intersections = Vec::new();

        for half_edge in half_edges {
            let intersection = CurveEdgeIntersection::compute(curve, half_edge);

            if let Some(intersection) = intersection {
                match intersection {
                    CurveEdgeIntersection::Point { point_on_curve } => {
                        intersections.push(point_on_curve);
                    }
                    CurveEdgeIntersection::Coincident { points_on_curve } => {
                        intersections.extend(points_on_curve);
                    }
                }
            }
        }

        assert!(intersections.len() % 2 == 0);

        intersections.sort();

        let intervals = intersections
            .as_slice()
            .array_chunks_ext()
            .map(|&[start, end]| CurveFaceIntersectionInterval { start, end })
            .collect();

        Self { intervals }
    }

    /// Merge this intersection list with another
    ///
    /// The merged list will contain all overlaps of the intervals from the two
    /// other lists.
    pub fn merge(&self, other: &Self) -> Self {
        let mut self_intervals = self.intervals.iter().copied();
        let mut other_interval = other.intervals.iter().copied();

        let mut next_self = self_intervals.next();
        let mut next_other = other_interval.next();

        let mut intervals = Vec::new();

        while let (Some(self_), Some(other)) = (next_self, next_other) {
            // If we're starting another loop iteration, we have another
            // interval available from both `self` and `other` each. Only if
            // that's the case, is there a chance for an overlap.

            // Build the overlap of the two next intervals, by comparing them.
            // At this point we don't know yet, if this is a valid interval.
            let overlap_start = self_.start.max(other.start);
            let overlap_end = self_.end.min(other.end);

            if overlap_start < overlap_end {
                // This is indeed a valid overlap. Add it to our list of
                // results.
                intervals.push(CurveFaceIntersectionInterval {
                    start: overlap_start,
                    end: overlap_end,
                });
            }

            // Only if the end of the overlap interval has overtaken one of the
            // input ones are we done with it. An input interval that hasn't
            // been overtaken by the overlap, could still overlap with another
            // interval.
            if self_.end <= overlap_end {
                // Current interval from `self` has been overtaken. Let's grab
                // the next one.
                next_self = self_intervals.next();
            }
            if other.end <= overlap_end {
                // Current interval from `other` has been overtaken. Let's grab
                // the next one.
                next_other = other_interval.next();
            }
        }

        Self { intervals }
    }

    /// Indicate whether the intersection list is empty
    pub fn is_empty(&self) -> bool {
        self.intervals.is_empty()
    }
}

impl IntoIterator for CurveFaceIntersection {
    type Item = CurveFaceIntersectionInterval;
    type IntoIter = vec::IntoIter<Self::Item>;

    fn into_iter(self) -> Self::IntoIter {
        self.intervals.into_iter()
    }
}

/// An intersection between a curve and a face
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash, Ord, PartialOrd)]
pub struct CurveFaceIntersectionInterval {
    /// The start of the intersection interval, in curve coordinates
    pub start: Point<1>,

    /// The end of the intersection interval, in curve coordinates
    pub end: Point<1>,
}

impl<P> From<[P; 2]> for CurveFaceIntersectionInterval
where
    P: Into<Point<1>>,
{
    fn from(interval: [P; 2]) -> Self {
        let [start, end] = interval.map(Into::into);
        Self { start, end }
    }
}

#[cfg(test)]
mod tests {
    use crate::{
        builder::{CurveBuilder, FaceBuilder},
        partial::{Partial, PartialCurve, PartialFace, PartialObject},
        services::Services,
    };

    use super::CurveFaceIntersection;

    #[test]
    fn compute() {
        let mut services = Services::new();

        let surface = services.objects.surfaces.xy_plane();

        let mut curve = PartialCurve {
            surface: Partial::from(surface.clone()),
            ..Default::default()
        };
        curve.update_as_line_from_points([[-3., 0.], [-2., 0.]]);
        let curve = curve.build(&mut services.objects);

        #[rustfmt::skip]
        let exterior = [
            [-2., -2.],
            [ 2., -2.],
            [ 2.,  2.],
            [-2.,  2.],
        ];
        #[rustfmt::skip]
        let interior = [
            [-1., -1.],
            [-1.,  1.],
            [ 1.,  1.],
            [ 1., -1.],
        ];

        let face = {
            let mut face = PartialFace::default();
            face.update_exterior_as_polygon(surface.clone(), exterior);
            face.add_interior_polygon(surface, interior);

            face.build(&mut services.objects)
        };

        let expected =
            CurveFaceIntersection::from_intervals([[[1.], [2.]], [[4.], [5.]]]);
        assert_eq!(CurveFaceIntersection::compute(&curve, &face), expected);
    }

    #[test]
    fn merge() {
        let a = CurveFaceIntersection::from_intervals([
            [[0.], [1.]],   // 1: `a` and `b` are equal
            [[2.], [5.]],   // 2: `a` contains `b`
            [[7.], [8.]],   // 3: `b` contains `a`
            [[9.], [11.]],  // 4: overlap; `a` is left
            [[14.], [16.]], // 5: overlap; `a` is right
            [[18.], [21.]], // 6: one of `a` partially overlaps two of `b`
            [[23.], [25.]], // 7: two of `a` partially overlap one of `b`
            [[26.], [28.]], // 7
            [[31.], [35.]], // 8: partial/complete: one of `a`, two of `b`;
            [[36.], [38.]], // 9: partial/complete: two of `a`, one of `b`
            [[39.], [40.]], // 9
            [[41.], [45.]], // 10: complete/partial: one of `a`, two of `b`
            [[48.], [49.]], // 11: complete/partial: two of `a`, one of `b`
            [[50.], [52.]], // 11
            [[53.], [58.]], // 12: one of `a` overlaps two of `b` completely
            [[60.], [61.]], // 13: one of `b` overlaps two of `a` completely
            [[62.], [63.]], // 13
            [[65.], [66.]], // 14: one of `a` with no overlap in `b`
        ]);
        let b = CurveFaceIntersection::from_intervals([
            [[0.], [1.]],   // 1
            [[3.], [4.]],   // 2
            [[6.], [9.]],   // 3
            [[10.], [12.]], // 4
            [[13.], [15.]], // 5
            [[17.], [19.]], // 6
            [[20.], [22.]], // 6
            [[24.], [27.]], // 7
            [[30.], [32.]], // 8
            [[33.], [34.]], // 8
            [[37.], [41.]], // 9
            [[42.], [43.]], // 10
            [[44.], [46.]], // 10
            [[47.], [51.]], // 11
            [[54.], [55.]], // 12
            [[56.], [57.]], // 12
            [[59.], [64.]], // 13
        ]);

        let merged = a.merge(&b);

        let expected = CurveFaceIntersection::from_intervals([
            [[0.], [1.]],   // 1
            [[3.], [4.]],   // 2
            [[7.], [8.]],   // 3
            [[10.], [11.]], // 4
            [[14.], [15.]], // 5
            [[18.], [19.]], // 6
            [[20.], [21.]], // 6
            [[24.], [25.]], // 7
            [[26.], [27.]], // 7
            [[31.], [32.]], // 8
            [[33.], [34.]], // 8
            [[37.], [38.]], // 9
            [[39.], [40.]], // 9
            [[42.], [43.]], // 10
            [[44.], [45.]], // 10
            [[48.], [49.]], // 11
            [[50.], [51.]], // 11
            [[54.], [55.]], // 12
            [[56.], [57.]], // 12
            [[60.], [61.]], // 13
            [[62.], [63.]], // 13
        ]);
        assert_eq!(merged, expected);
    }
}