1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
//! Shape triangulation

mod delaunay;
mod polygon;

use fj_interop::mesh::Mesh;
use fj_math::Point;

use self::{delaunay::TriangulationPoint, polygon::Polygon};

use super::approx::{face::FaceApprox, Approx, Tolerance};

/// Triangulate a shape
pub trait Triangulate: Sized {
    /// Triangulate the shape
    fn triangulate(self) -> Mesh<Point<3>> {
        let mut mesh = Mesh::new();
        self.triangulate_into_mesh(&mut mesh);
        mesh
    }

    /// Triangulate a partial shape into the provided mesh
    ///
    /// This is a low-level method, intended for implementation of
    /// `Triangulate`. Most callers should prefer [`Triangulate::triangulate`].
    fn triangulate_into_mesh(self, mesh: &mut Mesh<Point<3>>);
}

impl<T> Triangulate for (T, Tolerance)
where
    T: Approx,
    T::Approximation: IntoIterator<Item = FaceApprox>,
{
    fn triangulate_into_mesh(self, mesh: &mut Mesh<Point<3>>) {
        let (approx, tolerance) = self;

        let approx = approx.approx(tolerance);

        for approx in approx {
            approx.triangulate_into_mesh(mesh);
        }
    }
}

impl Triangulate for FaceApprox {
    fn triangulate_into_mesh(self, mesh: &mut Mesh<Point<3>>) {
        let points: Vec<_> = self
            .points()
            .into_iter()
            .map(|point| TriangulationPoint {
                point_surface: point.local_form,
                point_global: point.global_form,
            })
            .collect();
        let face_as_polygon = Polygon::new()
            .with_exterior(
                self.exterior
                    .points()
                    .into_iter()
                    .map(|point| point.local_form),
            )
            .with_interiors(self.interiors.into_iter().map(|interior| {
                interior.points().into_iter().map(|point| point.local_form)
            }));

        let mut triangles =
            delaunay::triangulate(points, self.coord_handedness);
        triangles.retain(|triangle| {
            face_as_polygon
                .contains_triangle(triangle.map(|point| point.point_surface))
        });

        for triangle in triangles {
            let points = triangle.map(|point| point.point_global);
            mesh.push_triangle(points, self.color);
        }
    }
}

#[cfg(test)]
mod tests {
    use fj_interop::mesh::Mesh;
    use fj_math::{Point, Scalar};

    use crate::{
        algorithms::approx::{Approx, Tolerance},
        objects::{Face, Surface},
        stores::Stores,
    };

    use super::Triangulate;

    #[test]
    fn simple() -> anyhow::Result<()> {
        let stores = Stores::new();

        let a = [0., 0.];
        let b = [2., 0.];
        let c = [2., 2.];
        let d = [0., 1.];

        let surface = stores.surfaces.insert(Surface::xy_plane());
        let face = Face::builder(&stores, surface)
            .with_exterior_polygon_from_points([a, b, c, d])
            .build();

        let a = Point::from(a).to_xyz();
        let b = Point::from(b).to_xyz();
        let c = Point::from(c).to_xyz();
        let d = Point::from(d).to_xyz();

        let triangles = triangulate(face)?;

        assert!(triangles.contains_triangle([a, b, d]));
        assert!(triangles.contains_triangle([b, c, d]));
        assert!(!triangles.contains_triangle([a, b, c]));
        assert!(!triangles.contains_triangle([a, c, d]));

        Ok(())
    }

    #[test]
    fn simple_hole() -> anyhow::Result<()> {
        let stores = Stores::new();

        let a = [0., 0.];
        let b = [4., 0.];
        let c = [4., 4.];
        let d = [0., 4.];

        let e = [1., 1.];
        let f = [1., 2.];
        let g = [3., 3.];
        let h = [3., 1.];

        let surface = stores.surfaces.insert(Surface::xy_plane());
        let face = Face::builder(&stores, surface.clone())
            .with_exterior_polygon_from_points([a, b, c, d])
            .with_interior_polygon_from_points([e, f, g, h])
            .build();

        let triangles = triangulate(face)?;

        let a = surface.point_from_surface_coords(a);
        let b = surface.point_from_surface_coords(b);
        let e = surface.point_from_surface_coords(e);
        let f = surface.point_from_surface_coords(f);
        let g = surface.point_from_surface_coords(g);
        let h = surface.point_from_surface_coords(h);

        // Let's test that some correct triangles are present. We don't need to
        // test them all.
        //
        // Please note that there are multiple valid triangulations of any given
        // polygon. So if you change the input data above, or the algorithm, the
        // following assertions might break.
        //
        // This limits the usefulness of this test. It would be better to have a
        // smarter way of verifying the triangulation.
        assert!(triangles.contains_triangle([a, b, e]));
        assert!(triangles.contains_triangle([b, e, h]));

        // Shouldn't contain any possible triangle from the hole.
        assert!(!triangles.contains_triangle([e, f, g]));
        assert!(!triangles.contains_triangle([e, g, h]));
        assert!(!triangles.contains_triangle([e, f, h]));
        assert!(!triangles.contains_triangle([f, g, h]));

        Ok(())
    }

    #[ignore]
    #[test]
    fn sharp_concave_shape() -> anyhow::Result<()> {
        let stores = Stores::new();

        //
        //                c
        //               /|
        //   e          / |
        //   |\       /   |
        //   | |     /    |
        //   | \   /      |
        //   |  \ /       |
        //   |   d        |
        //   a ---------- b
        //

        let a = [0., 0.];
        let b = [0.4, 0.];
        //let b = [0.5, 0.]; // test passes with this change
        let c = [0.4, 1.0];
        let d = [0.1, 0.1];
        let e = [0., 0.8];

        let surface = stores.surfaces.insert(Surface::xy_plane());
        let face = Face::builder(&stores, surface.clone())
            .with_exterior_polygon_from_points([a, b, c, d, e])
            .build();

        let triangles = triangulate(face)?;

        let a3 = surface.point_from_surface_coords(a);
        let b3 = surface.point_from_surface_coords(b);
        let c3 = surface.point_from_surface_coords(c);
        let d3 = surface.point_from_surface_coords(d);
        let e3 = surface.point_from_surface_coords(e);

        assert!(triangles.contains_triangle([a3, b3, d3]));
        assert!(triangles.contains_triangle([b3, c3, d3]));
        assert!(triangles.contains_triangle([a3, d3, e3]));

        assert!(!triangles.contains_triangle([b3, e3, d3]));

        Ok(())
    }

    fn triangulate(face: impl Into<Face>) -> anyhow::Result<Mesh<Point<3>>> {
        let tolerance = Tolerance::from_scalar(Scalar::ONE)?;
        Ok(face.into().approx(tolerance).triangulate())
    }
}