1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
use std::collections::{btree_set, BTreeSet};
use fj_interop::mesh::Color;
use fj_math::Winding;
use crate::{
builder::FaceBuilder,
stores::{Handle, Stores},
};
use super::{Cycle, Surface};
/// A face of a shape
///
/// A `Face` is a bounded area of a [`Surface`], the [`Surface`] itself being an
/// infinite 2-dimensional object in 3D space. `Face`s are bound by one exterior
/// cycle, which defines the outer boundary, and an arbitrary number of interior
/// cycles (i.e. holes).
///
/// `Face` has a defined orientation, a front and a back side. When faces are
/// combined into [`Shell`]s, the face orientation defines what is inside and
/// outside of the shell. This stands in contrast to [`Surface`], which has no
/// defined orientation.
///
/// You can look at a `Face` from two directions: front and back. The winding of
/// the exterior cycle will be clockwise or counter-clockwise, depending on your
/// perspective. The front side of the face, is the side where from which the
/// exterior cycle appear counter-clockwise.
///
/// Interior cycles must have the opposite winding of the exterior cycle,
/// meaning on the front side of the face, they must appear clockwise. This
/// means that all [`HalfEdge`]s that bound a `Face` have the interior of the
/// face on their left side (on the face's front side).
///
/// [`HalfEdge`]: super::HalfEdge
/// [`Shell`]: super::Shell
#[derive(Clone, Debug, Eq, PartialEq, Hash, Ord, PartialOrd)]
pub struct Face {
surface: Handle<Surface>,
exterior: Cycle,
interiors: Vec<Cycle>,
color: Color,
}
impl Face {
/// Build a `Face` using [`FaceBuilder`]
pub fn builder(stores: &Stores, surface: Handle<Surface>) -> FaceBuilder {
FaceBuilder {
stores,
surface,
exterior: None,
interiors: Vec::new(),
}
}
/// Construct a new instance of `Face`
///
/// Creates the face with no interiors and the default color. This can be
/// overridden using the `with_` methods.
pub fn from_exterior(exterior: Cycle) -> Self {
Self {
surface: exterior.surface().clone(),
exterior,
interiors: Vec::new(),
color: Color::default(),
}
}
/// Add interior cycles to the face
///
/// Consumes the face and returns the updated instance.
///
/// # Panics
///
/// Panics, if the added cycles are not defined in the face's surface.
///
/// Panics, if the winding of the interior cycles is not opposite that of
/// the exterior cycle.
pub fn with_interiors(
mut self,
interiors: impl IntoIterator<Item = Cycle>,
) -> Self {
for interior in interiors.into_iter() {
assert_eq!(
self.surface().id(),
interior.surface().id(),
"Cycles that bound a face must be in face's surface"
);
assert_ne!(
self.exterior().winding(),
interior.winding(),
"Interior cycles must have opposite winding of exterior cycle"
);
self.interiors.push(interior);
}
self
}
/// Update the color of the face
///
/// Consumes the face and returns the updated instance.
pub fn with_color(mut self, color: Color) -> Self {
self.color = color;
self
}
/// Access this face's surface
pub fn surface(&self) -> &Handle<Surface> {
&self.surface
}
/// Access the cycle that bounds the face on the outside
pub fn exterior(&self) -> &Cycle {
&self.exterior
}
/// Access the cycles that bound the face on the inside
///
/// Each of these cycles defines a hole in the face.
pub fn interiors(&self) -> impl Iterator<Item = &Cycle> + '_ {
self.interiors.iter()
}
/// Access all cycles of this face
pub fn all_cycles(&self) -> impl Iterator<Item = &Cycle> + '_ {
[self.exterior()].into_iter().chain(self.interiors())
}
/// Access the color of the face
pub fn color(&self) -> Color {
self.color
}
/// Determine handed-ness of the face's front-side coordinate system
///
/// A face is defined on a surface, which has a coordinate system. Since
/// surfaces aren't considered to have an orientation, their coordinate
/// system can be considered to be left-handed or right-handed, depending on
/// which side of the surface you're looking at.
///
/// Faces *do* have an orientation, meaning they have definite front and
/// back sides. The front side is the side, where the face's exterior cycle
/// is wound counter-clockwise.
pub fn coord_handedness(&self) -> Handedness {
match self.exterior().winding() {
Winding::Ccw => Handedness::RightHanded,
Winding::Cw => Handedness::LeftHanded,
}
}
}
/// A collection of faces
#[derive(Clone, Debug, Default, Eq, PartialEq, Hash, Ord, PartialOrd)]
pub struct Faces {
inner: BTreeSet<Face>,
}
impl Faces {
/// Create an empty instance of `Faces`
pub fn new() -> Self {
Self::default()
}
/// Find the given face
pub fn find(&self, face: &Face) -> Option<Face> {
for f in self {
if f == face {
return Some(f.clone());
}
}
None
}
}
impl Extend<Face> for Faces {
fn extend<T: IntoIterator<Item = Face>>(&mut self, iter: T) {
self.inner.extend(iter)
}
}
impl IntoIterator for Faces {
type Item = Face;
type IntoIter = btree_set::IntoIter<Face>;
fn into_iter(self) -> Self::IntoIter {
self.inner.into_iter()
}
}
impl<'a> IntoIterator for &'a Faces {
type Item = &'a Face;
type IntoIter = btree_set::Iter<'a, Face>;
fn into_iter(self) -> Self::IntoIter {
self.inner.iter()
}
}
/// The handedness of a face's coordinate system
///
/// See [`Face::coord_handedness`].
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash, Ord, PartialOrd)]
pub enum Handedness {
/// The face's coordinate system is left-handed
LeftHanded,
/// The face's coordinate system is right-handed
RightHanded,
}