1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
use std::collections::{btree_set, BTreeSet};

use fj_interop::mesh::Color;
use fj_math::Winding;

use crate::{
    builder::FaceBuilder,
    stores::{Handle, Stores},
};

use super::{Cycle, Surface};

/// A face of a shape
///
/// A `Face` is a bounded area of a [`Surface`], the [`Surface`] itself being an
/// infinite 2-dimensional object in 3D space. `Face`s are bound by one exterior
/// cycle, which defines the outer boundary, and an arbitrary number of interior
/// cycles (i.e. holes).
///
/// `Face` has a defined orientation, a front and a back side. When faces are
/// combined into [`Shell`]s, the face orientation defines what is inside and
/// outside of the shell. This stands in contrast to [`Surface`], which has no
/// defined orientation.
///
/// You can look at a `Face` from two directions: front and back. The winding of
/// the exterior cycle will be clockwise or counter-clockwise, depending on your
/// perspective. The front side of the face, is the side where from which the
/// exterior cycle appear counter-clockwise.
///
/// Interior cycles must have the opposite winding of the exterior cycle,
/// meaning on the front side of the face, they must appear clockwise. This
/// means that all [`HalfEdge`]s that bound a `Face` have the interior of the
/// face on their left side (on the face's front side).
///
/// [`HalfEdge`]: super::HalfEdge
/// [`Shell`]: super::Shell
#[derive(Clone, Debug, Eq, PartialEq, Hash, Ord, PartialOrd)]
pub struct Face {
    surface: Handle<Surface>,
    exterior: Cycle,
    interiors: Vec<Cycle>,
    color: Color,
}

impl Face {
    /// Build a `Face` using [`FaceBuilder`]
    pub fn builder(stores: &Stores, surface: Handle<Surface>) -> FaceBuilder {
        FaceBuilder {
            stores,
            surface,
            exterior: None,
            interiors: Vec::new(),
        }
    }

    /// Construct a new instance of `Face`
    ///
    /// Creates the face with no interiors and the default color. This can be
    /// overridden using the `with_` methods.
    pub fn from_exterior(exterior: Cycle) -> Self {
        Self {
            surface: exterior.surface().clone(),
            exterior,
            interiors: Vec::new(),
            color: Color::default(),
        }
    }

    /// Add interior cycles to the face
    ///
    /// Consumes the face and returns the updated instance.
    ///
    /// # Panics
    ///
    /// Panics, if the added cycles are not defined in the face's surface.
    ///
    /// Panics, if the winding of the interior cycles is not opposite that of
    /// the exterior cycle.
    pub fn with_interiors(
        mut self,
        interiors: impl IntoIterator<Item = Cycle>,
    ) -> Self {
        for interior in interiors.into_iter() {
            assert_eq!(
                self.surface().id(),
                interior.surface().id(),
                "Cycles that bound a face must be in face's surface"
            );
            assert_ne!(
                self.exterior().winding(),
                interior.winding(),
                "Interior cycles must have opposite winding of exterior cycle"
            );

            self.interiors.push(interior);
        }

        self
    }

    /// Update the color of the face
    ///
    /// Consumes the face and returns the updated instance.
    pub fn with_color(mut self, color: Color) -> Self {
        self.color = color;
        self
    }

    /// Access this face's surface
    pub fn surface(&self) -> &Handle<Surface> {
        &self.surface
    }

    /// Access the cycle that bounds the face on the outside
    pub fn exterior(&self) -> &Cycle {
        &self.exterior
    }

    /// Access the cycles that bound the face on the inside
    ///
    /// Each of these cycles defines a hole in the face.
    pub fn interiors(&self) -> impl Iterator<Item = &Cycle> + '_ {
        self.interiors.iter()
    }

    /// Access all cycles of this face
    pub fn all_cycles(&self) -> impl Iterator<Item = &Cycle> + '_ {
        [self.exterior()].into_iter().chain(self.interiors())
    }

    /// Access the color of the face
    pub fn color(&self) -> Color {
        self.color
    }

    /// Determine handed-ness of the face's front-side coordinate system
    ///
    /// A face is defined on a surface, which has a coordinate system. Since
    /// surfaces aren't considered to have an orientation, their coordinate
    /// system can be considered to be left-handed or right-handed, depending on
    /// which side of the surface you're looking at.
    ///
    /// Faces *do* have an orientation, meaning they have definite front and
    /// back sides. The front side is the side, where the face's exterior cycle
    /// is wound counter-clockwise.
    pub fn coord_handedness(&self) -> Handedness {
        match self.exterior().winding() {
            Winding::Ccw => Handedness::RightHanded,
            Winding::Cw => Handedness::LeftHanded,
        }
    }
}

/// A collection of faces
#[derive(Clone, Debug, Default, Eq, PartialEq, Hash, Ord, PartialOrd)]
pub struct Faces {
    inner: BTreeSet<Face>,
}

impl Faces {
    /// Create an empty instance of `Faces`
    pub fn new() -> Self {
        Self::default()
    }

    /// Find the given face
    pub fn find(&self, face: &Face) -> Option<Face> {
        for f in self {
            if f == face {
                return Some(f.clone());
            }
        }

        None
    }
}

impl Extend<Face> for Faces {
    fn extend<T: IntoIterator<Item = Face>>(&mut self, iter: T) {
        self.inner.extend(iter)
    }
}

impl IntoIterator for Faces {
    type Item = Face;
    type IntoIter = btree_set::IntoIter<Face>;

    fn into_iter(self) -> Self::IntoIter {
        self.inner.into_iter()
    }
}

impl<'a> IntoIterator for &'a Faces {
    type Item = &'a Face;
    type IntoIter = btree_set::Iter<'a, Face>;

    fn into_iter(self) -> Self::IntoIter {
        self.inner.iter()
    }
}

/// The handedness of a face's coordinate system
///
/// See [`Face::coord_handedness`].
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash, Ord, PartialOrd)]
pub enum Handedness {
    /// The face's coordinate system is left-handed
    LeftHanded,

    /// The face's coordinate system is right-handed
    RightHanded,
}