fixedstr/
zero_terminated.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
//! This module implements [zstr], which are zero-terminated strings of
//! fixed maximum lengths.  Each `zstr<N>` is represented underneath with
//! an u8-array of size N.  Compared to [crate::fstr], these strings
//! are more memory efficient but with some of the operations taking slightly
//! longer.  However, *all* bytes of the array following the string
//! are set to zero.  This allows the first zero-byte of the array to
//! be found by binary search, giving an O(log N) length function.
//!
//!Type zstr\<N\> can store strings consisting of up to N-1 bytes
//! whereas fstr\<N\> can store strings consisting of up to N bytes.
//! Also, itztr is assumed that the zstr may carray non-textual data and therefore
//! implements some of the traits differently.

#![allow(unused_variables)]
#![allow(non_snake_case)]
#![allow(non_camel_case_types)]
#![allow(unused_parens)]
#![allow(unused_assignments)]
#![allow(unused_mut)]
#![allow(dead_code)]

#[cfg(feature = "std")]
#[cfg(not(feature = "no-alloc"))]
use crate::fstr;

use crate::tstr;
use core::cmp::{min, Ordering};
use core::ops::Add;

#[cfg(not(feature = "no-alloc"))]
extern crate alloc;

#[cfg(feature = "std")]
#[cfg(not(feature = "no-alloc"))]
extern crate std;

/// `zstr<N>`: utf-8 strings of size up to N bytes. The strings are
/// zero-terminated with a single byte, with the additional requirement that
/// all bytes following the first zero are also zeros in the underlying array.
/// This allows for an O(log N) [zstr::len] function.  Note that
/// [utf8 encodings](https://www.ibm.com/docs/en/db2/11.5?topic=support-unicode-character-encoding)
/// of unicode characters allow single null bytes to be distinguished as
/// end-of-string.
#[derive(Copy, Clone, Eq)]
pub struct zstr<const N: usize> {
    chrs: [u8; N],
} //zstr
impl<const N: usize> zstr<N> {
    /// creates a new `zstr<N>` with given &str.  If the length of s exceeds
    /// N, the extra characters are ignored.
    /// This function is also called by
    /// several others including [zstr::from].
    pub fn make(s: &str) -> zstr<N> {
        let mut chars = [0u8; N];
        let bytes = s.as_bytes(); // &[u8]
        let mut i = 0;
        let limit = if N == 0 { 0 } else { min(N - 1, bytes.len()) };
        chars[..limit].clone_from_slice(&bytes[..limit]);
        zstr { chrs: chars }
    } //make

    /// alias for [zstr::make]
    #[inline]
    pub fn create(s: &str) -> zstr<N> {
        Self::make(s)
    }

    /// version of make that returns the original string in an `Err(_)` if
    /// truncation is requried, or in an `Ok(_)` if no truncation is required
    pub fn try_make(s: &str) -> Result<zstr<N>, &str> {
        if s.len() + 1 > N {
            Err(s)
        } else {
            Ok(zstr::make(s))
        }
    }

    /// creates an empty string, equivalent to zstr::default() but can also
    /// be called in a const context
    pub const fn new() -> zstr<N> {
        zstr {
          chrs: [0;N]
        }
    }

/// const constructor, to be called from const contexts.  However, as
/// const constructors are restricted from using iterators, it's slightly
/// better to call the non-const constructors in non-const contexts.
/// Truncates automatically.
    pub const fn const_make(s:&str) -> zstr<N> {
      let mut t = zstr::<N>::new();
      let mut len = s.len();
      if len>N-1 { len = N-1; } // fix max length
      let bytes = s.as_bytes();
      let mut i = 0;
      while i<len {
        t.chrs[i] = bytes[i];
        i += 1;
      }
      t
    }//const_make

    /// version of `const_make` that does not truncate.
    pub const fn const_try_make(s:&str) -> Option<zstr<N>> {
      if s.len()+1>N {None}
      else { Some(zstr::const_make(s)) }
    }

    /// const function that
    /// creates a new `zstr<N>` with given `&[u8]` slice.  If the length of the
    /// slice exceeds N-1, the extra bytes are ignored.  All bytes of the slice
    /// following the first zero-byte are also ignored.
    /// **This operation does not check if the u8 slice is an utf8 source.**
    /// This function is unique to zstr and not available for the
    /// other string types in this crate.
    pub const fn from_raw(s: &[u8]) -> zstr<N> {
        let mut z = zstr { chrs: [0; N] };
        let mut i = 0;
        while i + 1 < N && i < s.len() && s[i] != 0 {
            z.chrs[i] = s[i];
            i += 1;
        }
        z
    } //from_raw

    /// Length of the string in bytes (consistent with [str::len]).
    /// This function uses binary search to find the first zero-byte
    /// and runs in O(log N) time for each `zstr<N>`.  This function
    /// can be called from a const context.
    #[inline(always)]
    pub const fn len(&self) -> usize {
        self.blen()
    }

    /// Length of a `zstr<N>` string in bytes using O(n) linear search,
    /// may be useful when the string is of length n but n is known to be
    /// much smaller than N, or when the underlying array is corrupted.
    /// This function is const, and is unique to the zstr type and
    /// not available for other string types in this crate.
    pub const fn linear_len(&self) -> usize {
        let mut i = 0;
        while self.chrs[i] != 0 {
            i += 1;
        }
        return i;
    } //linear_len

    /// const function that checks that the underlying array of the zstr is
    /// properly zero-terminated, with no non-zero bytes after the first
    /// zero.  Returns false if there's a problem.
    pub const fn check_integrity(&self) -> bool {
        let mut n = self.linear_len();
        if n == N {
            return false;
        }
        while n < N {
            if self.chrs[n] != 0 {
                return false;
            }
            n += 1;
        } //while
        true
    } //check_integrity

    /// Guarantees that the underlying array of the zstr is
    /// properly zero-terminated, with no non-zero bytes after the first zero.
    pub fn clean(&mut self) {
        let mut n = self.linear_len();
        if n == N {
            self.chrs[n - 1] = 0;
        }
        while n < N {
            self.chrs[n] = 0;
            n += 1;
        } //while
    } //clean

    /// returns maximum capacity in bytes
    #[inline(always)]
    pub const fn capacity(&self) -> usize {
        if N == 0 {
            return 0;
        }
        N - 1
    }

    // new blen function uses binary search to find first 0 byte.
    const fn blen(&self) -> usize {
        let (mut min, mut max) = (0, N);
        let mut mid = 0;
        while min < max {
            //mid = (min + max) / 2;
            mid = min + (max-min)/2;   // no overflow, just in case
            if self.chrs[mid] == 0 {
                // go left
                max = mid;
            } else {
                // go right
                min = mid + 1;
            }
        } //while
        min
    } //blen, O(log N)

    /// converts zstr to an owned string
    #[cfg(not(feature = "no-alloc"))]
    pub fn to_string(&self) -> alloc::string::String {
        alloc::string::String::from(self.to_str())
    }

    /// returns slice of u8 array underneath the zstr, **including the terminating 0**
    #[inline]
    pub fn as_bytes(&self) -> &[u8] {
        &self.chrs[..self.blen() + 1]
    }

    /// returns mutable slice of the u8 array underneath, including the terminating zero.  **WARNING:** changing a byte to zero in the middle of the string is not enough to zero-terminate the string: the length calculation via binary search will become invalid. All bytes following the first zero must also be zeroed.  Use with care.
    pub fn as_bytes_mut(&mut self) -> &mut [u8] {
        let n = self.blen()+1;
        &mut self.chrs[0..n]
    }

    /// returns slice of u8 array underneath the zstr without the terminating zero
    #[inline]
    pub fn as_bytes_non_terminated(&self) -> &[u8] {
        &self.chrs[..self.blen()]
    }

    /// converts zstr to &str using [core::str::from_utf8_unchecked].
    pub fn to_str(&self) -> &str {
        unsafe { core::str::from_utf8_unchecked(&self.chrs[0..self.blen()]) }
    }
    /// checked version of [zstr::to_str], but may panic (calls `unwrap`)
    pub fn as_str(&self) -> &str {
        core::str::from_utf8(&self.chrs[0..self.blen()]).unwrap()
    }
    /// version of [zstr::as_str] that does not call `unwrap`
    pub fn as_str_safe(&self) -> Result<&str,core::str::Utf8Error> {
        core::str::from_utf8(&self.chrs[0..self.blen()])
    }
    

    /// changes a character at *character position* i to c.  This function
    /// requires that c is in the same character class (ascii or unicode)
    /// as the char being replaced.  It never shuffles the bytes underneath.
    /// The function returns true if the change was successful.
    pub fn set(&mut self, i: usize, c: char) -> bool {
        let ref mut cbuf = [0u8; 4];
        c.encode_utf8(cbuf);
        let clen = c.len_utf8();
        if let Some((bi, rc)) = self.to_str().char_indices().nth(i) {
            if clen == rc.len_utf8() {
                self.chrs[bi..bi + clen].clone_from_slice(&cbuf[..clen]);
                return true;
            }
        }
        return false;
    } //set
    /// adds chars to end of current string up to maximum size N of `zstr<N>`,
    /// returns the portion of the push string that was NOT pushed due to
    /// capacity, so
    /// if "" is returned then all characters were pushed successfully.
    #[inline]
    pub fn push<'t>(&mut self, s: &'t str) -> &'t str {
        self.push_str(s)
    } //push

    /// alias for [zstr::push]
    pub fn push_str<'t>(&mut self, src: &'t str) -> &'t str {
        let srclen = src.len();
        let slen = self.blen();
        let bytes = &src.as_bytes();
        let length = core::cmp::min(slen + srclen, N - 1);
        let remain = if N - 1 >= (slen + srclen) {
            0
        } else {
            (srclen + slen) - N + 1
        };
        let mut i = 0;
        while i < srclen && i + slen + 1 < N {
            self.chrs[slen + i] = bytes[i];
            i += 1;
        } //while
        &src[srclen - remain..]
    } //push_str

    /// pushes a single character to the end of the string, returning
    /// true on success.
    pub fn push_char(&mut self, c: char) -> bool {
        let clen = c.len_utf8();
        let slen = self.len();
        if slen + clen >= N {
            return false;
        }
        let mut buf = [0u8; 4]; // char buffer
        c.encode_utf8(&mut buf);
        for i in 0..clen {
            self.chrs[slen + i] = buf[i];
        }
        self.chrs[slen + clen] = 0;
        true
    } // push_char

    /// remove and return last character in string, if it exists
    pub fn pop_char(&mut self) -> Option<char> {
        if self.chrs[0] == 0 {
            return None;
        } // length zero
        let (ci, lastchar) = self.char_indices().last().unwrap();
        //self.chrs[ci]=0;
        let mut cm = ci;
        while cm < N && self.chrs[cm] != 0 {
            self.chrs[cm] = 0;
            cm += 1;
        }
        Some(lastchar)
    } //pop

    /// returns the number of characters in the string regardless of
    /// character class.  For strings with only single-byte chars,
    /// call [Self::len] instead.
    pub fn charlen(&self) -> usize {
        self.to_str().chars().count()
    }

    /// returns the nth character of the zstr
    pub fn nth(&self, n: usize) -> Option<char> {
        self.to_str().chars().nth(n)
        //if n<self.len() {Some(self.chrs[n] as char)} else {None}
    }

    /// returns the nth byte of the string as a char.  This
    /// function should only be called on, for example, ascii strings.  It
    /// is designed to be quicker than [zstr::nth], and does not check array bounds or
    /// check n against the length of the string. Nor does it check
    /// if the value returned is a valid character.
    pub const fn nth_bytechar(&self, n: usize) -> char {
        self.chrs[n] as char
    }
    /// alias for nth_bytechar (for backwards compatibility)
    pub const fn nth_ascii(&self, n: usize) -> char {
        self.chrs[n] as char
    }

    /// determines if string is an ascii string
    pub fn is_ascii(&self) -> bool {
        self.to_str().is_ascii()
    }

    /// shortens the zstr in-place. Note that n indicates
    /// a *character* position to truncate up to, not the byte position.
    /// If n is greater than the
    /// current character length of the string, this operation will have no effect.
    /// This is not an O(1) operation.
    pub fn truncate(&mut self, n: usize) // n is char position, not binary position
    {
        if let Some((bi, c)) = self.to_str().char_indices().nth(n) {
            let mut bm = bi;
            while bm < N && self.chrs[bm] != 0 {
                self.chrs[bm] = 0;
                bm += 1;
            }
            //self.chrs[bi] = 0;
        }
    }

    /// truncates string up to *byte* position n.  **Panics** if n is
    /// not on a character boundary truncate on owned Strings.
    /// Although faster than [zstr::truncate], this function is still
    /// not O(1) because it zeros the truncated bytes.  This is a calculated
    /// tradeoff with a O(log N) [zstr::len] function, which is expected to
    /// have greater impact.
    pub fn truncate_bytes(&mut self, n: usize) {
        if n < N {
            assert!(self.is_char_boundary(n));
            //self.chrs[n] = 0;
            let mut m = n;
            while m < N && self.chrs[m] != 0 {
                self.chrs[m] = 0;
                m += 1;
            }
        }
    } //truncate_bytes

    /// Trims **in-place** trailing ascii whitespaces.  This function
    /// regards all bytes as single chars.  The operation panics if
    /// the resulting string does not end on a character boundary.
    pub fn right_ascii_trim(&mut self) {
        let mut n = self.blen();
        while n > 0 && (self.chrs[n - 1] as char).is_ascii_whitespace() {
            self.chrs[n - 1] = 0;
            n -= 1;
        }
        assert!(self.is_char_boundary(n));
    } //right_trim

    /// Reverses **in-place** a string where characters are single bytes.
    /// The result of this operation on non single-byte chars is unpredicatable.
    /// This function is only available for the zstr type and not for other
    /// string types in this crate.
    pub fn reverse_bytes(&mut self) {
        let n = self.blen();
        let m = n / 2;
        let mut i = 0;
        while i < m {
            self.chrs.swap(i, n - i - 1);
            i += 1;
        }
    } //reverse_bytes

    /// in-place swap of bytes i and k, returns true on success and
    /// false if indices are out of bounds.  This function is only available
    /// for zstr strings and not for other string types in this crate.
    pub fn swap_bytes(&mut self, i: usize, k: usize) -> bool {
        if i != k && i < N && k < N && self.chrs[i] != 0 && self.chrs[k] != 0 {
            self.chrs.swap(i, k);
            true
        } else {
            false
        }
    } //swap_bytes

    /// resets string to empty string
    pub fn clear(&mut self) {
        self.chrs = [0; N];
        //self.chrs[0]=0;
    }

    /// in-place modification of ascii characters to lower-case, panics
    /// if the string is not ascii.
    pub fn make_ascii_lowercase(&mut self) {
        assert!(self.is_ascii());
        for b in &mut self.chrs {
            if *b == 0 {
                break;
            } else if *b >= 65 && *b <= 90 {
                *b += 32;
            }
        }
    } //make_ascii_lowercase

    /// in-place modification of ascii characters to upper-case, panics if
    /// the string is not ascii.
    pub fn make_ascii_uppercase(&mut self) {
        assert!(self.is_ascii());
        for b in &mut self.chrs {
            if *b == 0 {
                break;
            } else if *b >= 97 && *b <= 122 {
                *b -= 32;
            }
        }
    }

    /// Constructs a clone of this zstr but with only upper-case ascii
    /// characters.  This contrasts with [str::to_ascii_uppercase],
    /// which creates an owned String.
    pub fn to_ascii_upper(&self) -> Self {
        let mut cp = self.clone();
        cp.make_ascii_uppercase();
        cp
    }

    /// Constructs a clone of this zstr but with only lower-case ascii
    /// characters.  This contrasts with [str::to_ascii_lowercase],
    /// which creates an owned String.
    pub fn to_ascii_lower(&self) -> Self {
        let mut cp = *self;
        cp.make_ascii_lowercase();
        cp
    }

    /// Tests for ascii case-insensitive equality with another string.
    /// This function does not check if either string is ascii.
    pub fn case_insensitive_eq<TA>(&self, other: TA) -> bool
    where
        TA: AsRef<str>,
    {
        if self.len() != other.as_ref().len() {
            return false;
        }
        let obytes = other.as_ref().as_bytes();
        for i in 0..self.len() {
            let mut c = self.chrs[i];
            if (c > 64 && c < 91) {
                c = c | 32;
            } // make lowercase
            let mut d = obytes[i];
            if (d > 64 && d < 91) {
                d = d | 32;
            } // make lowercase
            if c != d {
                return false;
            }
        } //for
        true
    } //case_insensitive_eq

    // new for 0.5.0
    /// converts zstr to a raw pointer to the first byte
    pub const fn to_ptr(&self) -> *const u8 {
        let ptr = &self.chrs[0] as *const u8;
        ptr
        //ptr as *const char
    }

    /// Converts zstr to a mutable pointer to the first byte.  Although
    /// technically not 'unsafe', this function can be used to alter
    /// the underlying representation so that there are non-zero values
    /// after the first zero.  Use with care.
    pub fn to_ptr_mut(&mut self) -> *mut u8 {
        &mut self.chrs[0] as *mut u8
    }

    /// Creates a zstr from a raw pointer by copying bytes until the
    /// first zero is encountered or when maximum capacity (N-1) is reached.
    pub unsafe fn from_ptr(mut ptr: *const u8) -> Self {
        let mut z = zstr::new();
        let mut i = 0;
        while *ptr != 0 && i + 1 < N {
            z.chrs[i] = *ptr;
            ptr = (ptr as usize + 1) as *const u8;
            i += 1;
        } //while
        z.chrs[i] = 0;
        z
    } //unsafe from_raw

    /// Decodes a UTF-16 encodeded slice. If a decoding error is encountered
    /// or capacity exceeded, an `Err(s)` is returned where s is the
    /// the encoded string up to the point of the error.
    pub fn from_utf16(v: &[u16]) -> Result<Self, Self> {
        let mut s = Self::new();
        let mut len = 0; // track length without calling zstr::len
        let mut buf = [0u8; 4];
        for c in char::decode_utf16(v.iter().cloned()) {
            if let Ok(c1) = c {
                let cbytes = c1.encode_utf8(&mut buf);
                let clen = c1.len_utf8();
                len += clen;
                if len + 1 > N {
                    s.chrs[len - clen] = 0;
                    return Err(s);
                } else {
                    s.chrs[len - clen..len].copy_from_slice(&buf[..clen]);
                }
            } else {
                s.chrs[len] = 0;
                return Err(s);
            }
        }
        s.chrs[len] = 0;
        Ok(s)
    } //from_utf16
} //impl zstr<N>

impl<const N: usize> core::ops::Deref for zstr<N> {
    type Target = str;
    fn deref(&self) -> &Self::Target {
        self.to_str()
    }
}

impl<const N: usize> core::convert::AsRef<str> for zstr<N> {
    fn as_ref(&self) -> &str {
        self.to_str()
    }
}
impl<const N: usize> core::convert::AsMut<str> for zstr<N> {
    fn as_mut(&mut self) -> &mut str {
        let blen = self.blen();
        unsafe { core::str::from_utf8_unchecked_mut(&mut self.chrs[0..blen]) }
    }
}

impl<T: AsRef<str> + ?Sized, const N: usize> core::convert::From<&T> for zstr<N> {
    fn from(s: &T) -> zstr<N> {
        zstr::make(s.as_ref())
    }
}
impl<T: AsMut<str> + ?Sized, const N: usize> core::convert::From<&mut T> for zstr<N> {
    fn from(s: &mut T) -> zstr<N> {
        zstr::make(s.as_mut())
    }
}

#[cfg(feature = "std")]
#[cfg(not(feature = "no-alloc"))]
impl<const N: usize> std::convert::From<std::string::String> for zstr<N> {
    fn from(s: std::string::String) -> zstr<N> {
        zstr::<N>::make(&s[..])
    }
}
#[cfg(feature = "std")]
#[cfg(not(feature = "no-alloc"))]
impl<const N: usize, const M: usize> std::convert::From<fstr<M>> for zstr<N> {
    fn from(s: fstr<M>) -> zstr<N> {
        zstr::<N>::make(s.to_str())
    }
}

impl<const N: usize, const M: usize> core::convert::From<tstr<M>> for zstr<N> {
    fn from(s: tstr<M>) -> zstr<N> {
        zstr::<N>::make(s.to_str())
    }
}

impl<const N: usize> core::cmp::PartialOrd for zstr<N> {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        //Some(self.chrs[0..self.blen()].cmp(other.chrs[0..other.blen()]))
        Some(self.cmp(other))
    }
}

impl<const N: usize> core::cmp::Ord for zstr<N> {
    fn cmp(&self, other: &Self) -> Ordering {
        self.chrs[0..self.blen()].cmp(&other.chrs[0..other.blen()])
    }
}

impl<const M: usize> zstr<M> {
    /// converts an zstr\<M\> to an zstr\<N\>. If the length of the string being
    /// converted is greater than N-1, the extra characters are ignored.
    /// This operation produces a copy (non-destructive).
    /// Example:
    ///```ignore
    ///  let s1:zstr<8> = zstr::from("abcdefg");
    ///  let s2:zstr<16> = s1.resize();
    ///```
    pub fn resize<const N: usize>(&self) -> zstr<N> {
        let slen = self.blen();
        let length = if slen + 1 < N {
            slen
        } else if N == 0 {
            0
        } else {
            N - 1
        };
        let mut chars = [0u8; N];
        chars[..length].clone_from_slice(&self.chrs[..length]);
        zstr { chrs: chars }
    } //resize

    /// version of resize that does not allow string truncation due to length
    pub fn reallocate<const N: usize>(&self) -> Option<zstr<N>> {
        if self.len() < N {
            Some(self.resize())
        } else {
            None
        }
    }
} //impl zstr<M>

impl<const N: usize> core::fmt::Display for zstr<N> {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        //write!(f, "{}", self.to_str())
        f.pad(self.to_str())
    }
}

impl<const N: usize> PartialEq<&str> for zstr<N> {
    fn eq(&self, other: &&str) -> bool {
        self.to_str() == *other // see below
    } //eq
}
impl<const N: usize> PartialEq<&str> for &zstr<N> {
    fn eq(&self, other: &&str) -> bool {
        &self.to_str() == other
        /*
          let obytes = other.as_bytes();
          let olen = obytes.len();
          let blen = self.blen();
          if olen!=blen {return false;}
          for i in 0..olen
          {
             if obytes[i] != self.chrs[i] {return false;}
          }
          return true;
        */
    } //eq
}
impl<'t, const N: usize> PartialEq<zstr<N>> for &'t str {
    fn eq(&self, other: &zstr<N>) -> bool {
        &other.to_str() == self
    }
}
impl<'t, const N: usize> PartialEq<&zstr<N>> for &'t str {
    fn eq(&self, other: &&zstr<N>) -> bool {
        &other.to_str() == self
    }
}

/// defaults to empty string
impl<const N: usize> Default for zstr<N> {
    fn default() -> Self {
        zstr::<N>::make("")
    }
}
#[cfg(feature = "std")]
#[cfg(not(feature = "no-alloc"))]
impl<const N: usize, const M: usize> PartialEq<zstr<N>> for fstr<M> {
    fn eq(&self, other: &zstr<N>) -> bool {
        other.to_str() == self.to_str()
    }
}

#[cfg(feature = "std")]
#[cfg(not(feature = "no-alloc"))]
impl<const N: usize, const M: usize> PartialEq<fstr<N>> for zstr<M> {
    fn eq(&self, other: &fstr<N>) -> bool {
        other.to_str() == self.to_str()
    }
}

#[cfg(feature = "std")]
#[cfg(not(feature = "no-alloc"))]
impl<const N: usize, const M: usize> PartialEq<&fstr<N>> for zstr<M> {
    fn eq(&self, other: &&fstr<N>) -> bool {
        other.to_str() == self.to_str()
    }
}

impl<const N: usize> core::fmt::Debug for zstr<N> {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        f.pad(&self.to_str())
    }
} // Debug impl

impl<const N: usize> zstr<N> {
    /// returns a copy of the portion of the string, string could be truncated
    /// if indices are out of range. Similar to slice [start..end]
    pub fn substr(&self, start: usize, end: usize) -> zstr<N> {
        let mut chars = [0u8; N];
        let mut inds = self.char_indices();
        let len = self.len();
        let blen = self.blen();
        if start >= len || end <= start {
            return zstr { chrs: chars };
        }
        let (si, _) = inds.nth(start).unwrap();
        let last = if (end >= len) {
            blen
        } else {
            match inds.nth(end - start - 1) {
                Some((ei, _)) => ei,
                None => blen,
            } //match
        }; //let last =...
        chars[..last - si].clone_from_slice(&self.chrs[si..last]);
        zstr { chrs: chars }
    } //substr
}

/// [zstr] type aliases for convenience
pub type ztr8 = zstr<8>;
pub type ztr16 = zstr<16>;
pub type ztr32 = zstr<32>;
pub type ztr64 = zstr<64>;
pub type ztr128 = zstr<128>;

////////////// core::fmt::Write trait
/// Usage:
/// ```
///  # use fixedstr::*;
///   use core::fmt::Write;
///   let mut s = zstr::<32>::new();
///   let result = write!(&mut s,"hello {}, {}, {}",1,2,3);
///   /* or */
///   let s2 = str_format!(zstr<16>,"abx{}{}{}",1,2,3);
/// ```
impl<const N: usize> core::fmt::Write for zstr<N> {
    fn write_str(&mut self, s: &str) -> core::fmt::Result //Result<(),core::fmt::Error>
    {
        if s.len() + self.len() + 1 > N {
            return Err(core::fmt::Error::default());
        }
        self.push(s);
        Ok(())
    } //write_str
} //core::fmt::Write trait

#[cfg(feature = "experimental")]
mod special_index {
    use super::*;
    use core::ops::{Range, RangeFrom, RangeFull, RangeTo};
    use core::ops::{RangeInclusive, RangeToInclusive};

    impl<const N: usize> core::ops::Index<Range<usize>> for zstr<N> {
        type Output = str;
        fn index(&self, index: Range<usize>) -> &Self::Output {
            &self.to_str()[index]
        }
    } //impl Index
    impl<const N: usize> core::ops::Index<RangeTo<usize>> for zstr<N> {
        type Output = str;
        fn index(&self, index: RangeTo<usize>) -> &Self::Output {
            &self.to_str()[index]
        }
    } //impl Index
    impl<const N: usize> core::ops::Index<RangeFrom<usize>> for zstr<N> {
        type Output = str;
        fn index(&self, index: RangeFrom<usize>) -> &Self::Output {
            &self.to_str()[index]
        }
    } //impl Index
    impl<const N: usize> core::ops::Index<RangeInclusive<usize>> for zstr<N> {
        type Output = str;
        fn index(&self, index: RangeInclusive<usize>) -> &Self::Output {
            &self.to_str()[index]
        }
    } //impl Index
    impl<const N: usize> core::ops::Index<RangeToInclusive<usize>> for zstr<N> {
        type Output = str;
        fn index(&self, index: RangeToInclusive<usize>) -> &Self::Output {
            &self.to_str()[index]
        }
    } //impl Index
    impl<const N: usize> core::ops::Index<RangeFull> for zstr<N> {
        type Output = str;
        fn index(&self, index: RangeFull) -> &Self::Output {
            &self.to_str()[index]
        }
    } //impl Index

    // must include above to have the following ..

    ///The implementation of `Index<usize>` for types `zstr<N>` is different
    ///from that of `fstr<N>` and `tstr<N>`, to allow `IndexMut` on a single
    ///byte.  The type returned by this trait is &u8, not &str.  This special
    ///trait is only available with the `experimental` feature.
    impl<const N: usize> core::ops::Index<usize> for zstr<N> {
        type Output = u8;
        fn index(&self, index: usize) -> &Self::Output {
            &self.chrs[index]
        }
    } //impl Index

    /// **This trait is provided with caution**, and only with the
    /// **`experimental`** feature, as it allows arbitrary changes
    /// to the bytes of the string.  In particular, the string can become
    /// corrupted if a premature zero-byte is created using this function,
    /// which invalidates the [Self::len] function.  Several other operations
    /// such as [Self::push] depend on a correct length function.
    impl<const N: usize> core::ops::IndexMut<usize> for zstr<N> {
        fn index_mut(&mut self, index: usize) -> &mut Self::Output {
            let ln = self.blen();
            if index >= ln {
                panic!("index {} out of range ({})", index, ln);
            }
            &mut self.chrs[index]
        }
    } //impl IndexMut
} // special_index submodule (--features experimental)

impl<const N: usize, TA: AsRef<str>> Add<TA> for zstr<N> {
    type Output = zstr<N>;
    fn add(self, other: TA) -> zstr<N> {
        let mut a2 = self;
        a2.push(other.as_ref());
        a2
    }
} //Add &str
  /*
  impl<const N: usize> Add<&str> for zstr<N> {
      type Output = zstr<N>;
      fn add(self, other: &str) -> zstr<N> {
          let mut a2 = self;
          a2.push(other);
          a2
      }
  } //Add &str
  */
impl<const N: usize> Add<&zstr<N>> for &str {
    type Output = zstr<N>;
    fn add(self, other: &zstr<N>) -> zstr<N> {
        let mut a2 = zstr::from(self);
        a2.push(other);
        a2
    }
} //Add &str on left

impl<const N: usize> Add<zstr<N>> for &str {
    type Output = zstr<N>;
    fn add(self, other: zstr<N>) -> zstr<N> {
        let mut a2 = zstr::from(self);
        a2.push(&other);
        a2
    }
} //Add &str on left

impl<const N: usize> core::hash::Hash for zstr<N> {
    fn hash<H: core::hash::Hasher>(&self, state: &mut H) {
        self.as_ref().hash(state);
    }
} //hash
  /*
  impl<const N: usize, const M:usize> core::cmp::PartialEq<zstr<M>> for zstr<N> {
      fn eq(&self, other: &zstr<M>) -> bool {
         self.as_ref() == other.as_ref()
      }
  }
  */

impl<const N: usize> core::cmp::PartialEq for zstr<N> {
    fn eq(&self, other: &Self) -> bool {
        self.as_ref() == other.as_ref()
    }
}

impl<const N: usize> core::str::FromStr for zstr<N> {
    type Err = &'static str;
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        if s.len() < N {
            Ok(zstr::from(s))
        } else {
            Err("capacity exceeded")
        }
    }
}


/// Iterator over a [zstr]`<N>` in `CS`-size `&[u8]` slices,
/// except for possibly the last slice.  The last slice may also be
/// zero-terminated. 'CS' must be non-zero.
#[cfg(feature = "experimental")]
pub struct ChunkyIter<'t, const N:usize, const CS:usize> {
  bur : &'t [u8;N],
  index : usize,
}
#[cfg(feature = "experimental")]
impl<'t, const N:usize, const CS:usize> Iterator for ChunkyIter<'t,N,CS> {
  type Item = &'t [u8];
  fn next(&mut self) -> Option<Self::Item> {
    if CS==0 || self.index + 1 > N || self.bur[self.index]==0 { None }
    else {
       self.index += CS;
       Some(&self.bur[self.index-CS .. min(N,self.index)])
    }
  }//next
} // impl Iterator for ChunkyIter

#[cfg(feature = "experimental")]
impl<const N:usize> zstr<N> {
  /// Creates a [ChunkyIter] iterator over `&[u8]` slices of fixed size `CS`,
  /// except for the final slice, which may also be zero-terminated.
  pub fn chunky_iter<'t,const CS:usize>(&'t self) -> ChunkyIter<'t,N,CS> {
    ChunkyIter {
      bur : &self.chrs,
      index : 0,
    }
  }//chunk_iter
}