1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
#![allow(unused_variables)]
#![allow(non_snake_case)]
#![allow(non_camel_case_types)]
#![allow(unused_parens)]
#![allow(unused_assignments)]
#![allow(unused_mut)]
#![allow(unused_imports)]
#![allow(dead_code)]
//! fixed strings with circular-queue backing
use core::cmp::{min, Ordering, PartialOrd};
extern crate alloc;
use alloc::string::String;
use core::ops::Add;
/// **This type is only available with the `circular-str` option.**
///
/// A *circular string* is represented underneath by a fixed-size u8
/// array arranged as a circular queue. The string can wrap around
/// either end and thus becomes internally non-contiguous.
/// This allows for efficient implementations of operations such as
/// push, trim *in front* of the string. However, `Deref<str>` is not
/// implemented as it cannot be done efficiently. Instead, the
/// [cstr::to_strs] function returns a pair of string slices, the second
/// of which is non-empty if the string is not contiguous. Additionally,
/// only single-byte characters are currently allowed, although this might
/// change in future by using a "ghost vector" at the end of the string.
/// An iterator [cstr::chars] is provided over all single-byte chars, which
/// also forms the foundation of other traits such as Eq, Ord, Hash, etc.
/// The Serialization (serde) and no-std options are both supported.
///
/// Each `cstr<N>` can hold up to N bytes and the maximum N is 65535.
/// Values of N that are exact powers of 2 are recommended to speed up
/// the `%` operation for computing indices in a ciruclar queue.
#[derive(Copy,Clone)]
pub struct cstr<const N : usize=32>
{
chrs: [u8;N],
front: u16,
len: u16,
} //cstr
impl<const N:usize> cstr<N>
{
/// create `cstr` from `&str` with silent truncation; panics if
/// N is greater than 65535
pub fn make(src:&str) -> cstr<N> {
if N<1 || N > 65535 { panic!("cstr strings are limited to a capacity between 1 and 65535");}
let mut m = cstr::<N>::new();
let length = core::cmp::min(N,src.len());
m.chrs[..length].copy_from_slice(&src.as_bytes()[..length]);
m.len = length as u16;
m
}//make
/// version of make that also panics if the input string is not ascii.
pub fn from_ascii(src:&str) -> cstr<N> {
if N<1 || N > 65535 { panic!("cstr strings are limited to a maximum capacity of 65535");}
if !src.is_ascii() { panic!("cstr string is not ascii");}
let mut m = cstr::<N>::new();
let length = core::cmp::min(N,src.len());
m.chrs[..length].copy_from_slice(&src.as_bytes()[..length]);
m.len = length as u16;
m
}//from_ascii
/// version of make that does not truncate: returns original str slice
/// as error. Also checks if N is no greater than 65535 without panic.
pub fn try_make(src:&str) -> Result<cstr<N>, &str> {
let length = src.len();
if length>N || N>65535 || N<1 {return Err(src);}
let mut m = cstr::new();
m.chrs[..].copy_from_slice(&src.as_bytes()[..length]);
m.len = length as u16;
Ok(m)
}//try_make
/// version of `try_make` that also checks if the input string is ascii.
pub fn try_make_ascii(src:&str) -> Option<cstr<N>> {
let length = src.len();
if length>N || N>65535 || N<1 || !src.is_ascii() {return None;}
let mut m = cstr::new();
m.chrs[..].copy_from_slice(&src.as_bytes()[..length]);
m.len = length as u16;
Some(m)
}//try_make
/// version of make that returns a pair consisting of the made
/// `cstr` and the remainder `&str` that was truncated; panics if
/// N is greater than 65535 (but does not check for ascii strings)
pub fn make_remainder(src:&str) -> (cstr<N>,&str) {
if N > 65535 || N<1 { panic!("cstr strings are limited to a capacity between 1 and 65535");}
let mut m = cstr::new();
let length = core::cmp::min(N,src.len());
m.chrs[..].copy_from_slice(&src.as_bytes()[..length]);
m.len = length as u16;
(m,&src[length..])
}//try_make
// make from a pair of str slices, does not truncate, and checks that
// N is not greater than 65535 without panic
pub fn from_pair(left:&str, right:&str) -> Option<cstr<N>> {
let (llen,rlen) = (left.len(), right.len());
if llen+rlen > N || N > 65535 || N<1 { return None; }
let mut m = cstr::new();
m.len = (llen+rlen) as u16;
m.chrs[..llen].copy_from_slice(&left.as_bytes()[..llen]);
m.chrs[llen..].copy_from_slice(&right.as_bytes()[llen..]);
Some(m)
}//from_pair
/// checks if the underlying representation of the string is contiguous
/// (without wraparound).
#[inline(always)]
pub fn is_contiguous(&self) -> bool {
(self.front as usize + self.len as usize) <= N
}
/// resets the internal representation of the cstr so that it is
/// represented contiguously, without wraparound. **Calling this function
/// has non-constant time cost both in terms of speed and memory** as
/// it requires a secondary buffer as well as copying.**
pub fn reset(&mut self) {
if self.front==0 {return;}
let mut mhrs = [0;N];
for i in 0..self.len as usize {
mhrs[i] = self.chrs[self.index(i)];
}
self.chrs = mhrs;
self.front = 0;
}//reset
/// clears string to empty string
pub fn clear(&mut self) {
self.len=0;
}
/// resets string to empty string and clears underlying buffer to contain
/// all zeros.
pub fn zero(&mut self) {
self.chrs = [0;N];
self.front = 0;
self.len = 0;
}
/// guarantees a contiguous underlying representation of the string
pub fn make_contiguous(&mut self) {
if !self.is_contiguous() { self.reset();}
}
/// returns the nth char of the fstr. Since only single-byte characters
/// are currently supported by the cstr type, this function is the same
/// as [Self::nth_bytechar] except that n is checked against the length of the
/// string.
pub fn nth(&self, n: usize) -> Option<char> {
if n<self.len as usize {
Some(self.chrs[self.index(n)] as char)
}
else {None}
}
/// returns the nth byte of the string as a char, does not check n
/// against length of array
#[inline]
pub fn nth_bytechar(&self, n: usize) -> char {
self.chrs[self.index(n)] as char
}
/// sets the nth byte of the string to the supplied character.
/// the character must fit in a single byte. Returns true on success.
pub fn set(&mut self, n:usize, c:char) -> bool {
if c.len_utf8()>1 || n>= self.len as usize { false }
else {
self.chrs[self.index(n)] = c as u8;
true
}
}//set
/// pushes given string to the end of the string, returns remainder
pub fn push_str<'t>(&mut self, src:&'t str) -> &'t str {
let srclen = src.len();
let slen = self.len as usize;
let bytes = &src.as_bytes();
let length = core::cmp::min(slen+srclen , N);
let remain = if N>(slen+srclen) {0} else {(srclen+slen)-N};
let mut i = 0;
while i<srclen && i+slen<N {
self.chrs[self.index(slen+i)] = bytes[i];
i += 1;
}//while
self.len += i as u16;
&src[srclen-remain..]
}//push_str
/// Pushes string to the **front** of the string, returns remainder.
/// because of the circular-queue backing, this operation as the same
/// cost as pushing to the back of the string ([Self::push_str]).
/// This function does not check if the input string is ascii.
pub fn push_front<'t>(&mut self, src:&'t str) -> &'t str {
let srclen = src.len();
let slen = self.len as usize;
let bytes = &src.as_bytes();
let length = core::cmp::min(slen+srclen , N);
let remain = if N>=(slen+srclen) {0} else {(srclen+slen)-N};
let mut i = 0;
while i<srclen && i+slen<N {
//self.front =(self.front + (N as u16) -1) % (N as u16);
self.front = ((self.front as usize+N-1) % N) as u16;
self.chrs[self.front as usize] = bytes[srclen-1-i];
i += 1;
}//while
self.len += i as u16;
&src[..remain]
}//push_front
/// alias for [Self::push_front]
pub fn push_str_front<'t>(&mut self, src:&'t str) -> &'t str {
self.push_front(src)
}
/// Pushes a single character to the end of the string, returning
/// true on success. This function checks if the given character
/// occupies a single-byte.
pub fn push_char(&mut self, c:char) -> bool {
let clen = c.len_utf8();
if clen>1 || self.len as usize + clen > N {return false;}
let mut buf = [0u8;4]; // char buffer
let bstr = c.encode_utf8(&mut buf);
self.push_str(bstr);
true
}// push_char
/// Pushes a single character to the front of the string, returning
/// true on success. This function checks if the given character
/// occupies a single-byte.
pub fn push_char_front(&mut self, c:char) -> bool {
let clen = c.len_utf8();
if clen>1 || self.len as usize + clen > N {return false;}
let newfront = (self.front as usize+N-1) % N;
self.chrs[newfront] = c as u8;
self.front = newfront as u16;
self.len += 1;
true
}//push_char_front
/// remove and return last character in string, if it exists
pub fn pop_char(&mut self) -> Option<char> {
if self.len()==0 {return None;}
let lasti = ((self.front+self.len-1) as usize)% N;
let firstchar = self.chrs[lasti] as char;
self.len-=1;
Some(firstchar)
/*
let (l,r) = self.to_strs();
let right = if r.len()>0 {r} else {l};
let (ci,lastchar) = right.char_indices().last().unwrap();
self.len = if r.len()>0 {(l.len() + ci) as u16} else {ci as u16};
Some(lastchar)
*/
}//pop
/// remove and return first character in string, if it exists
pub fn pop_char_front(&mut self) -> Option<char> {
if self.len()==0 {return None;}
let firstchar = self.chrs[self.front as usize] as char;
self.front = self.index16(1);
self.len -= 1;
Some(firstchar)
}//pop_char_front
/// alias for [Self::truncate]
pub fn truncate_right(&mut self, n: usize) {
if (n<self.len as usize) {
self.len = n as u16;
}
}
/// right-truncates string up to byte position n. No effect
/// if n is greater than or equal to the length of the string.
#[inline]
pub fn truncate(&mut self, n: usize) { self.truncate_right(n); }
/// left-truncates string up to byte position n. No effect
///if n is greater than the length of the string.
pub fn truncate_left(&mut self, n: usize) {
if (n>0 && n<=self.len as usize) {
/*
let (a,b) = self.to_strs();
if n<a.len() {
assert!(a.is_char_boundary(n));
}
else {
assert!(b.is_char_boundary(n-a.len()));
}
*/
self.front = self.index16(n as u16);
self.len -= n as u16;
}
}//truncate_left
/// alias for `truncate_left`
pub fn truncate_front(&mut self, n:usize) { self.truncate_left(n); }
/// finds the position of first character that satisfies given predicate
pub fn find<P>(&self, predicate: P) -> Option<usize>
where P : Fn(char) -> bool
{
let (a,b) = self.to_strs();
if let Some(pos) = a.find(|x:char|predicate(x)) {
Some(pos)
}
else if let Some(pos) = b.find(|x:char|predicate(x)) {
Some(a.len() + pos)
}
else { None }
}//find
/// finds the position of last character that satisfies given predicate
pub fn rfind<P>(&self, predicate: P) -> Option<usize>
where P : Fn(char) -> bool
{
let (a,b) = self.to_strs();
if let Some(pos) = b.find(|x:char|predicate(x)) {
Some(a.len()+pos)
}
else if let Some(pos) = a.find(|x:char|predicate(x)) {
Some(pos)
}
else { None }
}//find
/// finds position of first matching substring
pub fn find_substr(&self, s:&str) -> Option<usize> {
let (a,b) = self.to_strs();
if let Some(pos) = a.find(s) {
return Some(pos);
}
if s.len()>1 { //check middle
for i in 0..s.len()-1 {
let mid = s.len()-i-1;
if a.ends_with(&s[..mid]) && b.starts_with(&s[mid..]) {
return Some(a.len()-mid);
}
}// for each intermediate position
}
if let Some(pos) = b.find(s) {
return Some(a.len() + pos);
}
else {None}
}//find_substr
/// finds position of last matching substring
pub fn rfind_substr(&self, s:&str) -> Option<usize> {
let (a,b) = self.to_strs();
if let Some(pos) = b.find(s) {
return Some(a.len()+pos);
}
if s.len()>1 { // check middle
for i in 0..s.len()-1 {
let mid = s.len()-i-1;
if b.starts_with(&s[mid..]) && a.ends_with(&s[..mid]) {
return Some(a.len()-mid);
}
}//for
}
if let Some(pos) = a.find(s) {
Some(pos)
}
else { None }
}//find_substr
/// **in-place** trimming of white spaces at the front of the string
pub fn trim_left(&mut self) {
let (a,b) = self.to_strs();
let offset;
if let Some(i) = a.find(|c:char|!c.is_whitespace()) {
offset = i as u16;
}
else if let Some(k) = b.find(|c:char|!c.is_whitespace()) {
offset = (a.len() + k) as u16;
}
else {
offset = (a.len() + b.len()) as u16;
}
self.front = self.index16(offset); //((self.front as usize + offset)%N) as u16;
self.len -= offset;
}//trim_left
/// **in-place** trimming of white spaces at the end of the string
pub fn trim_right(&mut self) {
let (a,b) = self.to_strs();
let offset;
if b.len()==0 {
if let Some(k) = a.rfind(|c:char|!c.is_whitespace()) {
offset = a.len() - k - 1;
}
else {
offset = a.len();
}
}//contiguous
else if let Some(i) = b.rfind(|c:char|!c.is_whitespace()) {
offset = b.len() - i - 1;
}
else if let Some(k) = a.rfind(|c:char|!c.is_whitespace()) {
offset = b.len() + (a.len() - k - 1)
}
else {
offset = a.len() + b.len();
}
self.len -= offset as u16;
}//trim_right
/// **in-place** trimming of white spaces at either end of the string
pub fn trim_whitespaces(&mut self) {
self.trim_left();
self.trim_right();
}
// convenience
#[inline(always)]
fn endi(&self) -> usize { // index of last value plus 1
//fastmod(self.front as usize + self.len as usize,N)
(self.front as usize + self.len as usize )%N
}// last
#[inline(always)]
fn index(&self, i:usize) -> usize {
(self.front as usize +i)%N
} // index of ith vale
/// length of string in bytes
#[inline(always)]
pub fn len(&self) -> usize { self.len as usize }
/// construct new, empty string (same as `cstr::default`)
#[inline(always)]
pub fn new() -> Self {
Self::default()
}//new
/// returns a pair of string slices `(left,right)` which, when concatenated,
/// will yield an equivalent string underneath. In case of no wraparound,
/// the right str will be empty.
pub fn to_strs(&self) -> (&str,&str) {
let answer;
if self.len()==0 {answer = ("","");}
else if self.is_contiguous() {
let front = self.front as usize;
answer = (core::str::from_utf8(&self.chrs[front .. front+(self.len as usize)]).unwrap(),
"")
}
else {
answer=(core::str::from_utf8(&self.chrs[self.front as usize .. ]).unwrap(),
core::str::from_utf8(&self.chrs[.. self.endi()]).unwrap())
}
answer
}//to_strs
/// returns iterator over the characters of the string
pub fn chars<'a>(&'a self) -> CircCharIter<'a> {
let contig = self.is_contiguous();
CircCharIter {
first : if contig { &self.chrs[self.front as usize .. (self.front+self.len) as usize] }
else { &self.chrs[self.front as usize ..] },
second: if contig { &[] }
else { &self.chrs[..self.endi()] },
index : 0,
}
}//chars
/// alias for [Self.chars]
pub fn iter<'a>(&'a self) -> CircCharIter<'a> {
self.chars()
}
/// returns a copy of the same string that is contiguous underneath
pub fn to_contiguous(&self) -> cstr<N> {
let mut c = *self;
if !c.is_contiguous() {c.reset();}
c
}
/// returns a single str slice if the cstr is contiguous underneath,
/// otherwise panics.
pub fn force_str(&self) -> &str {
let (a,b) = self.to_strs();
if b.len()>0 {panic!("cstr cannot be transformed into a single str slice without calling reset()");}
a
}
/// converts cstr to an owned string
pub fn to_string(&self) -> String {
let (a,b) = self.to_strs();
let mut s = String::from(a);
if b.len()>0 {s.push_str(b);}
s
}//to_string
/// returns a copy of the portion of the string. Will return empty
/// string if indices are invalid. The returned string will be contiguous.
pub fn substr(&self, start: usize, end: usize) -> cstr<N> {
let mut s = cstr::<N>::default();
if (end<=start || start as u16 > self.len-1 || end>self.len as usize) {return s;}
for i in start .. end {
s.chrs[i-start] = self.chrs[self.index(i)];
}
s.len = (end-start) as u16;
s
}//substr
/// in-place modification of ascii characters to lower-case.
pub fn make_ascii_lowercase(&mut self) {
for i in 0..self.len as usize {
let b = &mut self.chrs[self.index(i)];
if *b>=65 && *b<=90 { *b |= 32; }
}
}//make_ascii_lowercase
/// in-place modification of ascii characters to upper-case.
pub fn make_ascii_uppercase(&mut self) {
for i in 0..self.len as usize {
let b = &mut self.chrs[self.index(i)];
if *b>=97 && *b<=122 { *b -= 32; }
}
}//make_ascii_uppercase
/*
/// returns an str slice representation by possibly calling
/// [Self::reset] first, which is expensive.
pub fn force_str(&mut self) -> &str {
if !self.is_contiguous() {self.reset();}
let(a,_) = self.to_strs();
a
}
#[cfg(feature="serde")]
/// for serde only, panics if underlying representation is not contiguous
pub fn as_str(&self) -> &str {
let(a,b) = self.to_strs();
if b.len()>0 {panic!("serialization of cstr is only allowed after reset()");}
a
}
#[inline]
fn index_of(&self,i:usize) -> usize {
fastmod(self.front as usize + i,N)
}
*/
#[inline(always)]
fn index16(&self, i:u16) -> u16 {
(self.front+i) % (N as u16)
//let n = N as u16;
//let mask = n-1;
//if n&mask==0 { (self.front+i) & mask } else {(self.front+i) % n }
}
}//main impl
///////////////////////////////////////////////////////////////
impl<const M: usize> cstr<M> {
/// converts an `cstr<M>` to an `cstr<N>`. If the length of the string being
/// converted is greater than N, the extra characters are ignored.
/// This operation produces a new string that is contiguous underneath.
pub fn resize<const N: usize>(&self) -> cstr<N> {
let slen = self.len();
let length = if (slen < N) { slen } else { N };
let mut s = cstr::<N>::default();
let (a,b) = self.to_strs();
s.chrs[..a.len()].copy_from_slice(a.as_bytes());
if b.len()>0 {
s.chrs[a.len()..].copy_from_slice(b.as_bytes());
}
s.len = self.len;
s
} //resize
/// version of resize that does not allow string truncation due to length
pub fn reallocate<const N: usize>(&self) -> Option<cstr<N>> {
if self.len() < N {
Some(self.resize())
} else {
None
}
}
} //impl cstr<M>
impl<const N :usize> Default for cstr<N> {
fn default() -> Self {
cstr {
chrs: [0;N],
front: 0,
len:0,
}
}
}//impl default
impl<const N: usize> core::fmt::Debug for cstr<N> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
let (a,b) = self.to_strs();
f.pad(a)?;
f.pad(b)
}
} // Debug impl
impl<const N: usize> core::fmt::Display for cstr<N> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
let (a,b) = self.to_strs();
write!(f, "{}{}", a,b)
}
}
/////////// need Eq, Ord, etc. and special iterator implementation
impl<const N: usize> PartialEq<&str> for cstr<N> {
fn eq(&self, other: &&str) -> bool {
&self == other
}//eq
}
impl<const N: usize> PartialEq<&str> for &cstr<N> {
fn eq(&self, other: &&str) -> bool {
let (a,b) = self.to_strs();
let (alen, blen) = (a.len(), b.len());
alen+blen==other.len() &&
a == &other[..alen] && (blen==0 || b == &other[alen..])
} //eq
}
/*
impl<T:AsRef<str>, const N: usize> PartialEq<&T> for &cstr<N> {
fn eq(&self, other: &&T) -> bool {
let (a,b) = self.to_strs();
let (alen, blen) = (a.len(), b.len());
let oref = other.as_ref();
alen+blen==oref.len() &&
a == &oref[..alen] && (blen==0 || b == &oref[alen..])
} //eq
}
*/
impl<const N: usize> PartialEq<cstr<N>> for &str {
fn eq(&self, other: &cstr<N>) -> bool {
let (a,b) = other.to_strs();
let (alen, blen) = (a.len(), b.len());
alen+blen==self.len() &&
a == &self[..alen] && (blen==0 || b == &self[alen..])
} //eq
}
impl<const N: usize> PartialEq<&cstr<N>> for &str {
fn eq(&self, other: &&cstr<N>) -> bool {
let (a,b) = other.to_strs();
let (alen, blen) = (a.len(), b.len());
alen+blen==self.len() &&
a == &self[..alen] && (blen==0 || b == &self[alen..])
} //eq
}
/// character interator, returned by [cstr::chars]
pub struct CircCharIter<'a> {
first : &'a [u8],
second: &'a [u8],
index : usize,
}
impl<'a> Iterator for CircCharIter<'a> {
type Item = char;
fn next(&mut self) -> Option<Self::Item> {
if self.index<self.first.len() {
self.index += 1;
Some(self.first[self.index-1] as char)
}
else if self.index-self.first.len() < self.second.len() {
self.index += 1;
Some(self.second[self.index-self.first.len()-1] as char)
}
else { None }
}//next
}// impl CircCharIter
impl<const N: usize> PartialEq for cstr<N> {
fn eq(&self, other: &Self) -> bool {
let mut schars = self.chars();
let mut ochars = other.chars();
loop {
match (schars.next(), ochars.next()) {
(None,None) => {break;},
(Some(x), Some(y)) if x==y => {},
_ => { return false; },
}//match
}//loop
true
}//eq for Self
}// PartialEq
impl<const N:usize> Eq for cstr<N> {}
impl<const N: usize> Ord for cstr<N> {
fn cmp(&self, other:&Self) -> Ordering {
let mut schars = self.chars();
let mut ochars = other.chars();
let mut answer = Ordering::Equal;
loop {
match (schars.next(), ochars.next()) {
(Some(x), Some(y)) if x.cmp(&y)==Ordering::Equal => {},
(Some(x), Some(y)) => { answer = x.cmp(&y); break; },
(None,None) => {break;}
(None,_) => { answer = Ordering::Less; break; },
(_,None) => { answer = Ordering::Greater; break; },
}//match
}//loop
answer
}//cmp
}//Ord
impl<const N: usize> PartialOrd for cstr<N> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
/*
let mut schars = self.chars();
let mut ochars = other.chars();
let mut answer = Ordering::Equal;
loop {
match (schars.next(), ochars.next()) {
(Some(x), Some(y)) if x.cmp(&y)==Ordering::Equal => {},
(Some(x), Some(y)) => { answer = x.cmp(&y); break; },
(None,None) => {break;}
(None,_) => { answer = Ordering::Less; break; },
(_,None) => { answer = Ordering::Greater; break; },
}//match
}//loop
Some(answer)
*/
}//partial_cmp
}// PartialOrd
impl<const N: usize> PartialOrd<&str> for cstr<N> {
fn partial_cmp(&self, other: &&str) -> Option<Ordering> {
let mut schars = self.chars();
let mut ochars = other.chars();
let mut answer = Ordering::Equal;
loop {
match (schars.next(), ochars.next()) {
(Some(x), Some(y)) if x.cmp(&y)==Ordering::Equal => {},
(Some(x), Some(y)) => { answer = x.cmp(&y); break; },
(None,None) => {break;}
(None,_) => { answer = Ordering::Less; break; },
(_,None) => { answer = Ordering::Greater; break; },
}//match
}//loop
Some(answer)
}//partial_cmp
}// PartialOrd
impl<const N: usize> PartialOrd<&str> for &cstr<N> {
fn partial_cmp(&self, other: &&str) -> Option<Ordering> {
let mut schars = self.chars();
let mut ochars = other.chars();
let mut answer = Ordering::Equal;
loop {
match (schars.next(), ochars.next()) {
(Some(x), Some(y)) if x.cmp(&y)==Ordering::Equal => {},
(Some(x), Some(y)) => { answer = x.cmp(&y); break; },
(None,None) => {break;}
(None,_) => { answer = Ordering::Less; break; },
(_,None) => { answer = Ordering::Greater; break; },
}//match
}//loop
Some(answer)
}//partial_cmp
}// PartialOrd
impl<const N:usize> core::hash::Hash for cstr<N> {
fn hash<H:core::hash::Hasher>(&self, state:&mut H) {
for i in (self.len as usize..0).rev() {
self.nth_bytechar(i-1).hash(state);
}
//for c in self.chars() { c.hash(state); }
}
}//hash
impl<T: AsRef<str> + ?Sized, const N: usize> core::convert::From<&T> for cstr<N> {
fn from(s: &T) -> cstr<N> {
cstr::make(s.as_ref())
}
}
impl<T: AsMut<str> + ?Sized, const N: usize> core::convert::From<&mut T> for cstr<N> {
fn from(s: &mut T) -> cstr<N> {
cstr::make(s.as_mut())
}
}
impl<const N: usize> core::fmt::Write for cstr<N> {
fn write_str(&mut self, s: &str) -> core::fmt::Result
{
if s.len() + self.len() > N {
return Err(core::fmt::Error::default());
}
self.push_str(s);
Ok(())
} //write_str
} //core::fmt::Write trait
impl<const N:usize> Add<&str> for cstr<N> {
type Output = cstr<N>;
fn add(self, other:&str) -> cstr<N> {
let mut a2 = self;
a2.push_str(other);
a2
}
}//Add &str
impl<const N:usize> Add for &cstr<N> {
type Output = cstr<N>;
fn add(self, other:&cstr<N>) -> cstr<N> {
let mut a2 = *self;
let (l,r) = other.to_strs();
a2.push_str(l);
if r.len()>0 { a2.push_str(r); }
a2
}
}//Add &str
impl<const N:usize> Add for cstr<N> {
type Output = cstr<N>;
fn add(self, other:cstr<N>) -> cstr<N> {
let mut a2 = self;
let (l,r) = other.to_strs();
a2.push_str(l);
if r.len()>0 { a2.push_str(r); }
a2
}
}//Add &str
/*
////////// fast x % n for n that are powers of 2
#[inline(always)]
fn fastmod(x:usize, n:usize) -> usize {
x % n
// let mask = n-1;
// if n&mask==0 { x & mask } else {x % n}
}//fastmod
*/
////// aliases
/// Convenient aliases for [cstr] using exact powers of 2
pub type cstr1k = cstr<1024>;
pub type cstr8 = cstr<8>;
pub type cstr16 = cstr<16>;
pub type cstr32 = cstr<32>;
pub type cstr64 = cstr<64>;
pub type cstr128 = cstr<128>;
pub type cstr256 = cstr<256>;
pub type cstr512 = cstr<512>;