1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
//! Traits for [`Vector`]s that implement very handy and convient functions.
//! [`FloatingPointVector`] for example implements `normalized()`, which is used heavily in game development.
//! 
//! # Traits
//! ```rust
//! pub trait Vector<T, const LEN: usize>: IntoIterator { .. } // For representing a basic [`Vector`].
//! pub trait IntegerVector<T, const LEN: usize>: Vector { .. } // For representing a [`Vector`] with Integers as its generic.
//! pub trait FloatingPointVector<T, const LEN: usize>: Vector { .. } // For representing a [`Vector`] with Floating-point Numbers as its generic.
//! pub trait TuplableVector<T, const LEN: usize>: Vector { .. } // For representing a [`Vector`] that can be converted into a tuple.
//! ```


/// Trait for structs that represent a [`Vector`], will be implemented by default when using the [`impl_vector`] Macro.
pub trait Vector<T, const LEN: usize>: IntoIterator {
    /// Returns the name of the [`Vector`] struct.
    /// 
    /// # Example
    /// ```rust
    /// let vector = Vector4::new(0, 0, 0, 0);
    /// assert_eq!(vector.name(), "Vector4");
    /// ```
    fn name(&self) -> &'static str;

    /// Returns the size of the [`Vector`] struct in bytes.
    /// 
    /// # Example
    /// ```rust
    /// let vector = Vector2::<u16>::new(0, 0);
    /// assert_eq!(vector.size(), 4);
    /// ```
    fn size(&self) -> usize {
        return core::mem::size_of::<T>() * LEN;
    }

    /// Returns the number of fields in the [`Vector`] struct.
    /// 
    /// # Example
    /// ```rust
    /// let vec2 = Vector2::new(0, 0);
    /// let vec3 = Vector3::new(0, 0, 0);
    /// let vec4 = Vector4::new(0, 0, 0, 0);
    /// 
    /// assert_eq!(vec2.len(), 2);
    /// assert_eq!(vec3.len(), 3);
    /// assert_eq!(vec4.len(), 4);
    /// ```
    fn fields(&self) -> usize {
        return LEN;
    }

    /// Converts the given [`Vector`] into an array coresponding to the size of the [`Vector`].
    /// 
    /// # Example
    /// ```rust
    /// let vector = Vector3::new(1, 2, 3);
    /// assert_eq!(vector.as_array(), [1, 2, 3]);
    /// ```
    fn as_array(self) -> [T; LEN];

    /// Converts the given [`Vector`] into a [`Vec`] coresponding to the size of the [`Vector`].
    /// 
    /// # Example
    /// ```rust
    /// let vector = Vector3::new(1, 2, 3);
    /// assert_eq!(vector.as_vec(), vec![1, 2, 3]);
    /// ```
    fn as_vec(self) -> std::vec::Vec<T>;
}


/// Trait for structs that represent a [`Vector`] that contains primitive integer data types.
pub trait IntegerVector<T: num_traits::PrimInt, const LEN: usize>: Vector<T, LEN> {
    /// Raises all numbers within the [`IntegerVector`] to the specified power.
    /// 
    /// # Example
    /// ```rust
    /// let vector = Vector3::new(2, 4, 6).pow(2);
    /// assert_eq!(vector, Vector3::new(4, 16, 36));
    /// ```
    fn pow(self, n: u32) -> Self;
}


/// Trait for structs that represent a [`Vector`] that contains floating-point data types.
pub trait FloatingPointVector<T: num_traits::Float, const LEN: usize>: Vector<T, LEN> {
    /// Converts all numbers within the [`FloatingPointVector`] to zero.
    /// 
    /// # Example
    /// ```rust
    /// let vector = Vector4::new(1.0, 2.0, 3.0, 4.0).zero();
    /// assert_eq!(vector, Vector4::new(0.0, 0.0, 0.0, 0.0));
    /// ```
    fn zero(self) -> Self;

    /// Converts all numbers within the [`FloatingPointVector`] to the largest integer less than or equal to the value.
    /// 
    /// # Example
    /// ```rust
    /// let vector = Vector2::new(4.25, 5.9).floor();
    /// assert_eq!(vector, Vector2::new(4.0, 5.0));
    /// ```
    fn floor(self) -> Self;

    /// Converts all numbers within the [`FloatingPointVector`] to the largest integer greater than or equal to the value.
    /// 
    /// # Example
    /// ```rust
    /// let vector = Vector2::new(4.25, 5.9).ceil();
    /// assert_eq!(vector, Vector2::new(5.0, 6.0));
    /// ```
    fn ceil(self) -> Self;

    /// Converts all numbers within the [`FloatingPointVector`] to the nearest integer.
    /// 
    /// # Example
    /// ```rust
    /// let vector = Vector2::new(4.25, 5.9).round();
    /// assert_eq!(vector, Vector2::new(4.0, 6.0));
    /// ```
    fn round(self) -> Self;

    /// Converts all numbers within the [`FloatingPointVector`] to their absolute value.
    /// 
    /// # Example
    /// ```rust
    /// let vector = Vector4::new(-3.0, 4.0, 5.3, -9.87).abs();
    /// assert_eq!(vector, Vector4::new(3.0, 4.0, 5.3, 9.87));
    /// ```
    fn abs(self) -> Self;

    /// Raises all numbers within the [`FloatingPointVector`] to an integer power.
    /// 
    /// # Example
    /// ```rust
    /// let vector = Vector2::new(2.0, 4.0).powi(2);
    /// assert_eq!(vector, Vector2::new(4, 16));
    /// ```
    fn powi(self, n: i32) -> Self;

    /// Raises all numbers within the [`FloatingPointVector`] to a floating point power.
    /// 
    /// # Example
    /// ```rust
    /// let vector = Vector2::new(2.0, 4.0).powf(2.0);
    /// assert_eq!(vector, Vector2::new(4.0, 16.0));
    /// ```
    fn powf(self, n: T) -> Self;

    /// Sets all numbers within the [`FloatingPointVector`] to their integer parts.
    /// 
    /// # Example
    /// ```rust
    /// let vector = Vector3::new(1.5, 2.34, 3.33).trunc();
    /// assert_eq!(vector, Vector3::new(1.0, 2.0, 3.0));
    /// ```
    fn trunc(self) -> Self;

    /// Sets all numbers within the [`FloatingPointVector`] to their fractional parts.
    /// 
    /// # Example
    /// ```rust
    /// let vector = Vector3::new(1.5, 2.34, 3.33).fract();
    /// assert_eq!(vector, Vector3::new(0.5, 0.34, 0.33));
    /// ```
    fn fract(self) -> Self;

    /// Sets all numbers within the [`FloatingPointVector`] to their square-root.
    /// 
    /// # Example
    /// ```rust
    /// let vector = Vector2::new(64.0, 25.0);
    /// assert_eq!(vector, Vector2::new(8.0, 5.0));
    /// ```
    fn sqrt(self) -> Self;

    /// Normalizes the [`FloatingPointVector`].
    /// 
    /// # Example
    /// ```rust
    /// let vector = Vector2::new(14.3, 7.9).normalized();
    /// assert_eq!(vector, Vector2::new(0.8753097187762677, 0.48356271177150456));
    /// ```
    fn normalized(self) -> Self;

    /// Linearly interpolates between two [`FloatingPointVector`]s by a normalized `weight`.
    /// 
    /// # Example
    /// ```rust
    /// let vector = Vector2::new(1.0, 2.0).lerp(Vector2::new(2.0, 3.0), 1.0);
    /// assert_eq!(vector, Vector2::new(2.0, 3.0));
    /// ```
    fn lerp(self, to: Self, weight: T) -> Self;

    /// Returns the dot product of two [`FloatingPointVector`]s,
    /// this can be used to compare the angle between two [`FloatingPointVector`]s.
    /// 
    /// # Example
    /// ```rust
    /// let dot = Vector2::new(1.0, 2.0).dot(Vector2::new(2.0, 4.0));
    /// assert_eq!(dot, 10.0);
    /// ```
    fn dot(self, b: Self) -> T;

    /// Returns the squared magnitude of the [`FloatingPointVector`].
    /// This will always run faster than [`length`], this method should prefered over it if applicable.
    /// 
    /// # Example
    /// ```rust
    /// let length_sq = Vector3::new(3.33, 2.04, 1.337).length_squared();
    /// assert_eq!(length_sq, 17.038069);
    /// ```
    fn length_squared(self) -> T;

    /// Returns the magnitude of the [`FloatingPointVector`].
    /// 
    /// # Example
    /// ```rust
    /// let length = Vector3::new(1.5, 2.0, 3.33).length();
    /// assert_eq!(length, 4.16400048030737);
    /// ```
    fn length(self) -> T
    where
        Self: Sized
    {
        return self.length_squared().sqrt();
    }

    /// Returns a normalized [`FloatingPointVector`] pointing from it to `to`.
    /// 
    /// # Example
    /// ```rust
    /// let from = Vector2::new(1.0, 2.0);
    /// let to = Vector2::new(5.0, 6.0);
    ///
    /// let direction = from.direction(to);
    ///
    /// assert_eq!(direction, Vector2::new(0.7071067811865475, 0.7071067811865475));
    /// ```
    fn direction(self, to: Self) -> Self
    where
        Self: Sized + core::ops::Sub<Output = Self>
    {
        return (to - self).normalized();
    }
}


/// Trait for structs that represent a [`Vector`] and that can be converted into tuples.
/// 
/// # Example
/// ```rust
/// pub struct Vector1<T> {
///     pub x: T,
/// }
/// 
/// // Implement [`Vector`] Trait for `Vector1`
/// impl_vector!(Vector1 { x }, 1);
/// 
/// impl<T> TuplableVector<T, { Vector1::<()>::LEN }> for Vector1<T> {
///     type Output = (T);
///     
///     fn as_tuple(self) -> Self::Output {
///         return (self.x);
///     }
/// }
/// ```
pub trait TuplableVector<T, const LEN: usize>: Vector<T, LEN> {
    type Output;
    
    /// Converts the [`TuplableVector`] into a tuple representing its values.
    /// 
    /// # Example:
    /// ```rust
    /// let tuple = Vector2::new(1, 2).as_tuple();
    /// assert_eq!(tuple, (1, 2));
    /// ```
    fn as_tuple(self) -> Self::Output;
}