fixed_resample/channel.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
use std::{
num::NonZeroUsize,
ops::Range,
sync::{
atomic::{AtomicBool, Ordering},
Arc,
},
};
use ringbuf::traits::{Consumer, Observer, Producer, Split};
#[cfg(feature = "resampler")]
use rubato::Sample;
#[cfg(feature = "resampler")]
use crate::{ResampleQuality, ResamplerType, RtResampler};
/// The trait governing a single sample.
///
/// There are two types which implements this trait so far:
/// * [f32]
/// * [f64]
#[cfg(not(feature = "resampler"))]
pub trait Sample
where
Self: Copy + Send,
{
fn zero() -> Self;
}
#[cfg(not(feature = "resampler"))]
impl Sample for f32 {
fn zero() -> Self {
0.0
}
}
#[cfg(not(feature = "resampler"))]
impl Sample for f64 {
fn zero() -> Self {
0.0
}
}
/// Additional options for a resampling channel.
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct ResamplingChannelConfig {
/// The amount of latency added in seconds between the input stream and the
/// output stream. If this value is too small, then underflows may occur.
///
/// The default value is `0.15` (150 ms).
pub latency_seconds: f64,
/// The capacity of the channel in seconds. If this is too small, then
/// overflows may occur. This should be at least twice as large as
/// `latency_seconds`.
///
/// The default value is `0.4` (400 ms).
pub capacity_seconds: f64,
#[cfg(feature = "resampler")]
/// The quality of the resampling alrgorithm to use if needed.
///
/// The default value is `ResampleQuality::Normal`.
pub quality: ResampleQuality,
}
impl Default for ResamplingChannelConfig {
fn default() -> Self {
Self {
latency_seconds: 0.15,
capacity_seconds: 0.4,
#[cfg(feature = "resampler")]
quality: ResampleQuality::Normal,
}
}
}
/// Create a new realtime-safe spsc channel for sending samples across streams.
///
/// If the input and output samples rates differ, then this will automatically
/// resample the input stream to match the output stream (unless the "resample"
/// feature is disabled). If the sample rates match, then no resampling will
/// occur.
///
/// Internally this uses the `ringbuf` crate.
///
/// * `in_sample_rate` - The sample rate of the input stream.
/// * `out_sample_rate` - The sample rate of the output stream.
/// * `num_channels` - The number of channels in the stream.
/// * `config` - Additional options for the resampling channel.
///
/// # Panics
///
/// Panics when any of the following are true:
///
/// * `in_sample_rate == 0`
/// * `out_sample_rate == 0`
/// * `num_channels == 0`
/// * `config.latency_seconds <= 0.0`
/// * `config.capacity_seconds <= 0.0`
///
/// If the "resampler" feature is disabled, then this will also panic if
/// `in_sample_rate != out_sample_rate`.
pub fn resampling_channel<T: Sample>(
in_sample_rate: u32,
out_sample_rate: u32,
num_channels: usize,
config: ResamplingChannelConfig,
) -> (ResamplingProd<T>, ResamplingCons<T>) {
#[cfg(feature = "resampler")]
let resampler = if in_sample_rate != out_sample_rate {
Some(RtResampler::<T>::new(
in_sample_rate,
out_sample_rate,
num_channels,
true,
config.quality,
))
} else {
None
};
resampling_channel_inner(
#[cfg(feature = "resampler")]
resampler,
in_sample_rate,
out_sample_rate,
num_channels,
config,
)
}
/// Create a new realtime-safe spsc channel for sending samples across streams
/// using the custom resampler.
///
/// If the input and output samples rates differ, then this will automatically
/// resample the input stream to match the output stream. If the sample rates
/// match, then no resampling will occur.
///
/// Internally this uses the `ringbuf` crate.
///
/// * `resampler` - The custom rubato resampler.
/// * `in_sample_rate` - The sample rate of the input stream.
/// * `out_sample_rate` - The sample rate of the output stream.
/// * `num_channels` - The number of channels in the stream.
/// * `config` - Additional options for the resampling channel. Note that
/// `config.quality` will be ignored.
///
/// # Panics
///
/// Panics when any of the following are true:
///
/// * `resampler.num_channels() != num_channels`
/// * `in_sample_rate == 0`
/// * `out_sample_rate == 0`
/// * `num_channels == 0`
/// * `config.latency_seconds <= 0.0`
/// * `config.capacity_seconds <= 0.0`
#[cfg(feature = "resampler")]
pub fn resampling_channel_custom<T: Sample>(
resampler: impl Into<ResamplerType<T>>,
in_sample_rate: u32,
out_sample_rate: u32,
num_channels: usize,
config: ResamplingChannelConfig,
) -> (ResamplingProd<T>, ResamplingCons<T>) {
let resampler: ResamplerType<T> = resampler.into();
assert_eq!(resampler.num_channels(), num_channels);
let resampler = if in_sample_rate != out_sample_rate {
Some(RtResampler::<T>::from_custom(resampler, true))
} else {
None
};
resampling_channel_inner(
resampler,
in_sample_rate,
out_sample_rate,
num_channels,
config,
)
}
fn resampling_channel_inner<T: Sample>(
#[cfg(feature = "resampler")] resampler: Option<RtResampler<T>>,
in_sample_rate: u32,
out_sample_rate: u32,
num_channels: usize,
config: ResamplingChannelConfig,
) -> (ResamplingProd<T>, ResamplingCons<T>) {
#[cfg(not(feature = "resampler"))]
assert_eq!(
in_sample_rate, out_sample_rate,
"Input and output sample rate must be equal when the \"resampler\" feature is disabled."
);
assert_ne!(in_sample_rate, 0);
assert_ne!(out_sample_rate, 0);
assert_ne!(num_channels, 0);
assert!(config.latency_seconds > 0.0);
assert!(config.capacity_seconds > 0.0);
let latency_frames = ((in_sample_rate as f64 * config.latency_seconds).round() as usize).max(1);
let buffer_capacity_frames = ((in_sample_rate as f64 * config.capacity_seconds).round()
as usize)
.max(latency_frames * 2);
let (mut prod, cons) = ringbuf::HeapRb::<T>::new(buffer_capacity_frames * num_channels).split();
assert_eq!(prod.capacity().get() % num_channels, 0);
// Pad the beginning of the buffer with zeros to create the desired latency.
prod.push_slice(&vec![T::zero(); latency_frames * num_channels]);
let reset_flag = Arc::new(AtomicBool::new(false));
let in_sample_rate_recip = (in_sample_rate as f64).recip();
let ratio = out_sample_rate as f64 / in_sample_rate as f64;
(
ResamplingProd {
prod,
num_channels: NonZeroUsize::new(num_channels).unwrap(),
latency_seconds: config.latency_seconds,
in_sample_rate_recip,
reset_flag: Arc::clone(&reset_flag),
},
ResamplingCons {
cons,
#[cfg(feature = "resampler")]
resampler,
num_channels: NonZeroUsize::new(num_channels).unwrap(),
latency_frames,
is_waiting_for_frames: true,
latency_seconds: config.latency_seconds,
in_sample_rate: in_sample_rate as f64,
in_sample_rate_recip,
ratio,
reset_flag,
},
)
}
/// The producer end of a realtime-safe spsc channel for sending samples across
/// streams.
///
/// If the input and output samples rates differ, then this will automatically
/// resample the input stream to match the output stream. If the sample rates
/// match, then no resampling will occur.
///
/// Internally this uses the `ringbuf` crate.
pub struct ResamplingProd<T: Sample> {
prod: ringbuf::HeapProd<T>,
num_channels: NonZeroUsize,
latency_seconds: f64,
in_sample_rate_recip: f64,
reset_flag: Arc<AtomicBool>,
}
impl<T: Sample + Copy> ResamplingProd<T> {
/// Push the given data in interleaved format.
///
/// Returns the number of frames (not samples) that were successfully pushed.
/// If this number is less than the number of frames in `data`, then it means
/// an overflow has occured.
pub fn push_interleaved(&mut self, data: &[T]) -> usize {
let data_frames = data.len() / self.num_channels.get();
let pushed_samples = self
.prod
.push_slice(&data[..data_frames * self.num_channels.get()]);
pushed_samples / self.num_channels.get()
}
/// Push the given data in de-interleaved format.
///
/// Returns the number of frames (not samples) that were successfully pushed.
/// If this number is less than the number of frames in `data`, then it means
/// an overflow has occured.
///
/// * `range` - The range in each slice in `input` to read data from.
pub fn push<Vin: AsRef<[T]>>(&mut self, data: &[Vin], range: Range<usize>) -> usize {
let num_channels = self.num_channels.get();
let frames = range.end - range.start;
let (s1, s2) = self.prod.vacant_slices_mut();
let s1_frames = s1.len() / num_channels;
debug_assert_eq!(s1_frames * num_channels, s1.len());
let first_frames = frames.min(s1_frames);
let s1_part = &mut s1[..first_frames * num_channels];
// SAFETY:
//
// * `&mut [MaybeUninit<T>]` and `&mut [T]` have the same size.
// * We initialize all data in the slice.
//
// TODO: Remove unsafe on `maybe_uninit_write_slice` stabilization.
unsafe {
let s1_part = std::mem::transmute::<_, &mut [T]>(s1_part);
crate::interleave::interleave(data, s1_part, self.num_channels, 0..first_frames);
}
let second_frames = if frames > first_frames {
let s2_frames = s2.len() / num_channels;
debug_assert_eq!(s2_frames * num_channels, s2.len());
let second_frames = (frames - first_frames).min(s2_frames);
let s2_part = &mut s2[..second_frames * num_channels];
// SAFETY:
//
// * `&mut [MaybeUninit<T>]` and `&mut [T]` have the same size.
// * We initialize all data in the slice.
//
// TODO: Remove unsafe on `maybe_uninit_write_slice` stabilization.
unsafe {
let s2_part = std::mem::transmute::<_, &mut [T]>(s2_part);
crate::interleave::interleave(
data,
s2_part,
self.num_channels,
first_frames..first_frames + second_frames,
);
}
second_frames
} else {
0
};
let pushed_frames = first_frames + second_frames;
// SAFETY:
//
// * All vacant data up to `pushed_frames` was initialized above.
// * This method borrows `self` as mutable, which prevents this
// producer from being accessed concurrently here.
unsafe {
self.prod.advance_write_index(pushed_frames * num_channels);
}
pushed_frames
}
/// Returns the number of frames that are currently available to be pushed
/// to the buffer.
pub fn available_frames(&self) -> usize {
self.prod.vacant_len() / self.num_channels.get()
}
/// The number of channels configured for this stream.
pub fn num_channels(&self) -> NonZeroUsize {
self.num_channels
}
/// An number describing the current amount of jitter in seconds between the
/// input and output streams. A value of `0.0` means the two channels are
/// perfectly synced, a value less than `0.0` means the input channel is
/// slower than the input channel, and a value greater than `0.0` means the
/// input channel is faster than the output channel.
///
/// This value can be used to correct for jitter and avoid underflows/
/// overflows. For example, if this value goes below a certain threshold,
/// then you can push an extra packet of data to correct for the jitter.
///
/// This number will be in the range `[-latency_seconds, capacity_seconds - latency_seconds]`,
/// where `latency_seconds` and `capacity_seconds` are the values passed in
/// [`ResamplingChannelConfig`] when this channel was constructed.
///
/// Note, it is typical for the jitter value to be around plus or minus the
/// size of a packet of pushed/read data even when the streams are perfectly
/// in sync).
pub fn jitter_seconds(&self) -> f64 {
((self.prod.occupied_len() / self.num_channels.get()) as f64 * self.in_sample_rate_recip)
- self.latency_seconds
}
/// Tell the consumer to clear all queued frames in the buffer.
pub fn reset(&mut self) {
self.reset_flag.store(true, Ordering::Relaxed);
}
}
/// The consumer end of a realtime-safe spsc channel for sending samples across
/// streams.
///
/// If the input and output samples rates differ, then this will automatically
/// resample the input stream to match the output stream. If the sample rates
/// match, then no resampling will occur.
///
/// Internally this uses the `ringbuf` crate.
pub struct ResamplingCons<T: Sample> {
cons: ringbuf::HeapCons<T>,
#[cfg(feature = "resampler")]
resampler: Option<RtResampler<T>>,
num_channels: NonZeroUsize,
latency_frames: usize,
is_waiting_for_frames: bool,
latency_seconds: f64,
in_sample_rate: f64,
in_sample_rate_recip: f64,
ratio: f64,
reset_flag: Arc<AtomicBool>,
}
impl<T: Sample + Copy> ResamplingCons<T> {
/// The number of channels configured for this stream.
pub fn num_channels(&self) -> NonZeroUsize {
self.num_channels
}
#[cfg(feature = "resampler")]
/// Returns `true` if resampling is occurring, `false` if the input and output
/// sample rates match.
pub fn is_resampling(&self) -> bool {
self.resampler.is_some()
}
#[cfg(feature = "resampler")]
/// Get the delay of the internal resampler, reported as a number of output
/// frames.
///
/// If no resampler is active, then this will return `0`.
pub fn output_delay(&self) -> usize {
self.resampler
.as_ref()
.map(|r| r.output_delay())
.unwrap_or(0)
}
/// The number of frames (not samples) that are currently available to be read
/// from the channel.
pub fn available_frames(&self) -> usize {
let available_in_frames = self.cons.occupied_len() / self.num_channels.get();
#[cfg(feature = "resampler")]
if let Some(resampler) = &self.resampler {
// The resampler processes in chunks.
let request_frames = resampler.request_frames();
let available_in_frames = (available_in_frames / request_frames) * request_frames;
return resampler.temp_frames()
+ (available_in_frames as f64 * self.ratio).floor() as usize;
}
available_in_frames
}
/// An number describing the current amount of jitter in seconds between the
/// input and output streams. A value of `0.0` means the two channels are
/// perfectly synced, a value less than `0.0` means the input channel is
/// slower than the input channel, and a value greater than `0.0` means the
/// input channel is faster than the output channel.
///
/// This value can be used to correct for jitter and avoid underflows/
/// overflows. For example, if this value goes above a certain threshold,
/// then you can read an extra packet of data or call
/// [`ResamplingCons::discard_frames`] or [`ResamplingCons::discard_jitter`]
/// to correct for the jitter.
///
/// This number will be in the range `[-latency_seconds, capacity_seconds - latency_seconds]`,
/// where `latency_seconds` and `capacity_seconds` are the values passed in
/// [`ResamplingChannelConfig`] when this channel was constructed.
///
/// Note, it is typical for the jitter value to be around plus or minus the
/// size of a packet of pushed/read data even when the streams are perfectly
/// in sync).
pub fn jitter_seconds(&self) -> f64 {
((self.cons.occupied_len() / self.num_channels.get()) as f64 * self.in_sample_rate_recip)
- self.latency_seconds
}
/// Clear all queued frames in the buffer.
pub fn reset(&mut self) {
#[cfg(feature = "resampler")]
if let Some(resampler) = &mut self.resampler {
resampler.reset();
}
self.cons.clear();
self.is_waiting_for_frames = true;
}
/// Discard a certian number of input frames (not output frames) from the buffer.
/// This can be used to correct for jitter and avoid overflows.
///
/// Returns the number of input frames that were discarded.
pub fn discard_frames(&mut self, frames: usize) -> usize {
self.cons
.skip(frames.min(self.available_frames()) * self.num_channels.get())
/ self.num_channels.get()
}
/// If the value of [`ResamplingCons::jitter_seconds`] is greater than the
/// given threshold in seconds, then discard the number of frames needed to
/// bring the jitter value back to `0.0` to avoid overflows.
///
/// Note, it is typical for the jitter value to be around plus or minus the
/// size of a packet of pushed/read data even when the streams are perfectly
/// in sync).
///
/// Returns the number of input frames that were discarded.
pub fn discard_jitter(&mut self, threshold_seconds: f64) -> usize {
assert!(threshold_seconds >= 0.0);
let jitter_secs = self.jitter_seconds();
if jitter_secs > threshold_seconds.max(0.0) {
let frames = (jitter_secs * self.in_sample_rate).round() as usize;
self.discard_frames(frames)
} else {
0
}
}
/// Read from the channel and store the results into the output buffer
/// in interleaved format.
pub fn read_interleaved(&mut self, output: &mut [T]) -> ReadStatus {
let num_channels = self.num_channels.get();
let out_frames = output.len() / num_channels;
if self.reset_flag.swap(false, Ordering::Relaxed) {
self.reset();
}
if self.is_waiting_for_frames {
if self.available_frames() >= self.latency_frames {
self.is_waiting_for_frames = false;
} else {
output.fill(T::zero());
return ReadStatus::WaitingForFrames;
}
}
let mut status = ReadStatus::Ok;
#[cfg(feature = "resampler")]
if let Some(resampler) = &mut self.resampler {
resampler.process_interleaved(
|in_buf| {
// Completely fill the buffer with new data.
// If the requested number of samples cannot be appended (i.e.
// an underflow occured), then fill the rest with zeros.
let samples = self.cons.pop_slice(in_buf);
if samples < in_buf.len() {
status = ReadStatus::Underflow;
in_buf[samples..].fill(T::zero());
self.is_waiting_for_frames = true;
}
},
&mut output[..out_frames * num_channels],
);
return status;
}
// Simply copy the input stream to the output.
let samples = self
.cons
.pop_slice(&mut output[..out_frames * num_channels]);
if samples < output.len() {
status = ReadStatus::Underflow;
output[samples..].fill(T::zero());
self.is_waiting_for_frames = true;
}
status
}
/// Read from the channel and store the results in the output buffer.
///
/// * `output` - The channels of audio data to write data to.
/// * `range` - The range in each slice in `output` to write data to. Data
/// inside this range will be fully filled, and any data outside this range
/// will be untouched.
pub fn read<Vout: AsMut<[T]>>(
&mut self,
output: &mut [Vout],
range: Range<usize>,
) -> ReadStatus {
let num_channels = self.num_channels.get();
if output.len() > num_channels {
for ch in output.iter_mut().skip(num_channels) {
ch.as_mut()[range.clone()].fill(T::zero());
}
}
if self.reset_flag.swap(false, Ordering::Relaxed) {
self.reset();
}
if self.is_waiting_for_frames {
if self.available_frames() >= self.latency_frames {
self.is_waiting_for_frames = false;
} else {
for (_, ch) in (0..num_channels).zip(output.iter_mut()) {
ch.as_mut()[range.clone()].fill(T::zero());
}
return ReadStatus::WaitingForFrames;
}
}
let mut status = ReadStatus::Ok;
#[cfg(feature = "resampler")]
if let Some(resampler) = &mut self.resampler {
resampler.process(
|in_buf| {
// Completely fill the buffer with new data.
// If the requested number of samples cannot be appended (i.e.
// an underflow occured), then fill the rest with zeros.
let request_frames = in_buf[0].len();
let (s1, s2) = self.cons.as_slices();
let s1_frames = s1.len() / num_channels;
debug_assert_eq!(s1_frames * num_channels, s1.len());
let first_frames = s1_frames.min(request_frames);
crate::interleave::deinterleave(s1, in_buf, self.num_channels, 0..first_frames);
let second_frames = if request_frames > first_frames {
let s2_frames = s2.len() / num_channels;
debug_assert_eq!(s2_frames * num_channels, s2.len());
let second_frames = (request_frames - first_frames).min(s2_frames);
crate::interleave::deinterleave(
s2,
in_buf,
self.num_channels,
first_frames..first_frames + second_frames,
);
second_frames
} else {
0
};
let filled_frames = first_frames + second_frames;
// SAFETY:
//
// * `T` implements `Copy`, meaning it does not implement `Drop` and thus
// it is safe to discard.
// * This method borrows `self` as mutable, which prevents this
// consumer from being accessed concurrently here.
unsafe {
self.cons.advance_read_index(filled_frames * num_channels);
}
if filled_frames < request_frames {
status = ReadStatus::Underflow;
for ch in in_buf.iter_mut() {
ch[filled_frames..].fill(T::zero());
}
self.is_waiting_for_frames = true;
}
},
output,
range,
);
return status;
}
let out_frames = range.end - range.start;
let (s1, s2) = self.cons.as_slices();
let s1_frames = s1.len() / num_channels;
debug_assert_eq!(s1_frames * num_channels, s1.len());
let first_frames = s1_frames.min(out_frames);
crate::interleave::deinterleave(
s1,
output,
self.num_channels,
range.start..range.start + first_frames,
);
let second_frames = if out_frames > first_frames {
let s2_frames = s2.len() / num_channels;
debug_assert_eq!(s2_frames * num_channels, s2.len());
let second_frames = (out_frames - first_frames).min(s2_frames);
crate::interleave::deinterleave(
s2,
output,
self.num_channels,
range.start + first_frames..range.start + first_frames + second_frames,
);
second_frames
} else {
0
};
let filled_frames = first_frames + second_frames;
// SAFETY:
//
// * `T` implements `Copy`, meaning it does not implement `Drop` and thus
// it is safe to discard.
// * This method borrows `self` as mutable, which prevents this
// consumer from being accessed concurrently here.
unsafe {
self.cons.advance_read_index(filled_frames * num_channels);
}
if filled_frames < out_frames {
status = ReadStatus::Underflow;
for (_, ch) in (0..num_channels).zip(output.iter_mut()) {
ch.as_mut()[range.start + filled_frames..range.end].fill(T::zero());
}
self.is_waiting_for_frames = true;
}
status
}
}
/// The status of reading data from [`ResamplingCons::read`].
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum ReadStatus {
/// The buffer was fully filled with samples from the input
/// stream.
Ok,
/// An input underflow occured. This may result in audible audio
/// glitches.
Underflow,
/// The channel is waiting for a certain number of frames to be
/// filled in the buffer before continuing after an underflow
/// or a reset. The output will contain silence.
WaitingForFrames,
}