fixed_resample/realtime.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
use std::num::NonZeroUsize;
use rubato::Sample;
use crate::{ResampleQuality, ResamplerType};
/// An easy to use resampler that can be used in realtime applications.
pub struct RtResampler<T: Sample> {
resampler: ResamplerType<T>,
in_buf: Vec<Vec<T>>,
out_buf: Vec<Vec<T>>,
intlv_buf: Vec<T>,
out_buf_len: usize,
remaining_frames_in_out_buf: usize,
num_channels: NonZeroUsize,
max_out_frames: usize,
input_frames_max: usize,
}
impl<T: Sample> RtResampler<T> {
/// Create a new realtime resampler.
///
/// * `in_sample_rate` - The sample rate of the input stream.
/// * `out_sample_rate` - The sample rate of the output stream.
/// * `num_channels` - The number of channels.
/// * `max_out_frames` - The maximum number of output frames that can appear in a
/// single call to [`RtResampler::process`].
/// * `interleaved` - If you are planning to use [`RtResampler::process_interleaved`],
/// set this to `true`. Otherwise you can set this to `false` to save a bit of
/// memory.
/// * `quality` - The quality of the resampling algorithm.
///
/// # Panics
///
/// Panics if:
/// * `in_sample_rate == 0`
/// * `out_sample_rate == 0`
/// * `num_channels == 0`,
/// * `max_out_frames == 0`
pub fn new(
in_sample_rate: u32,
out_sample_rate: u32,
num_channels: usize,
max_out_frames: usize,
interleaved: bool,
quality: ResampleQuality,
) -> Self {
let resampler =
ResamplerType::from_quality(in_sample_rate, out_sample_rate, num_channels, quality);
Self::from_custom(resampler, max_out_frames, interleaved)
}
/// Create a new realtime resampler using the given rubato resampler.
///
/// * `resampler` - The rubato resampler.
/// * `max_out_frames` - The maximum number of output frames that can appear in a
/// single call to [`RtResampler::process`].
/// * `interleaved` - If you are planning to use [`RtResampler::process_interleaved`],
/// set this to `true`. Otherwise you can set this to `false` to save a bit of
/// memory.
///
/// # Panics
/// Panics if `max_out_frames == 0`.
pub fn from_custom(
resampler: impl Into<ResamplerType<T>>,
max_out_frames: usize,
interleaved: bool,
) -> Self {
assert_ne!(max_out_frames, 0);
let mut resampler: ResamplerType<T> = resampler.into();
let num_channels = resampler.num_channels();
assert_ne!(num_channels, 0);
let input_frames_max = resampler.input_frames_max();
let output_frames_max = resampler.output_frames_max();
let intlv_buf = if num_channels == 1 || !interleaved {
Vec::new()
} else {
let mut v = Vec::new();
v.reserve_exact(input_frames_max * num_channels);
v.resize(input_frames_max * num_channels, T::zero());
v
};
Self {
resampler,
in_buf: (0..num_channels)
.map(|_| {
let mut v = Vec::new();
v.reserve_exact(input_frames_max);
v.resize(input_frames_max, T::zero());
v
})
.collect(),
out_buf: (0..num_channels)
.map(|_| {
let mut v = Vec::new();
v.reserve_exact(output_frames_max);
v.resize(output_frames_max, T::zero());
v
})
.collect(),
num_channels: NonZeroUsize::new(num_channels).unwrap(),
intlv_buf,
max_out_frames,
input_frames_max,
out_buf_len: 0,
remaining_frames_in_out_buf: 0,
}
}
/// Get the number of channels this resampler is configured for.
pub fn num_channels(&self) -> NonZeroUsize {
self.num_channels
}
/// Reset the resampler state and clear all internal buffers.
pub fn reset(&mut self) {
self.resampler.reset();
self.out_buf_len = 0;
self.remaining_frames_in_out_buf = 0;
}
/// The maximum number of output frames that can appear in a single call to
/// [`RtResampler::process`].
pub fn max_out_frames(&self) -> usize {
self.max_out_frames
}
/// The maximum number of frames that can be requested in [`RtResampler::process`].
pub fn max_request_frames(&self) -> usize {
self.input_frames_max
}
/// Resample the input stream and process into a block of data for the output stream.
///
/// This method is realtime-safe.
///
/// * `on_frames_requested` - This gets called whenever the resampler needs more
/// data from the input stream. The given buffer must be fully filled with new samples.
/// If there is not enough data to fill the buffer (i.e. an underflow occured), then fill
/// the rest of the frames with zeros. Do *NOT* resize the `Vec`s.
/// * `output` - The output buffers to write the resampled data to.
/// * `out_frames` - The number of frames to write to `output`. If the given value is
/// greater than [`RtResampler::max_out_frames`], then this will panic.
///
/// # Panics
///
/// * Panics if the number of output channels does not equal the number of channels
/// in this resampler.
/// * Panics if the number of frames in the output buffers is greater than
/// [`RtResampler::max_out_frames`].
pub fn process<Vout: AsMut<[T]>>(
&mut self,
mut on_frames_requested: impl FnMut(&mut [Vec<T>]),
output: &mut [Vout],
out_frames: usize,
) {
assert_eq!(output.len(), self.num_channels.get());
assert!(out_frames <= self.max_out_frames);
let mut frames_filled = if self.remaining_frames_in_out_buf > 0 {
let start_frame = self.out_buf_len - self.remaining_frames_in_out_buf;
let copy_frames = self.remaining_frames_in_out_buf.min(out_frames);
for (out_ch, in_ch) in output.iter_mut().zip(self.out_buf.iter()) {
let out_ch = out_ch.as_mut();
out_ch[..copy_frames]
.copy_from_slice(&in_ch[start_frame..start_frame + copy_frames]);
}
self.remaining_frames_in_out_buf -= copy_frames;
copy_frames
} else {
0
};
while frames_filled < out_frames {
(on_frames_requested)(&mut self.in_buf);
debug_assert!(self.in_buf[0].len() == self.input_frames_max);
let (_, out_frames_processed) = self
.resampler
.process_into_buffer(&self.in_buf, &mut self.out_buf, None)
.unwrap();
self.out_buf_len = out_frames_processed;
let copy_frames = out_frames_processed.min(out_frames - frames_filled);
for (out_ch, in_ch) in output.iter_mut().zip(self.out_buf.iter()) {
let out_ch = out_ch.as_mut();
out_ch[frames_filled..frames_filled + copy_frames]
.copy_from_slice(&in_ch[..copy_frames]);
}
self.remaining_frames_in_out_buf = self.out_buf_len - copy_frames;
frames_filled += copy_frames;
}
}
/// Resample the input stream and process into an interleaved block of data for the
/// output stream.
///
/// * `on_frames_requested` - This gets called whenever the resampler needs more
/// data from the input stream. The given buffer is in interleaved format, and it
/// must be completely filled with new data. If there is not enough data to fill
/// the buffer (i.e. an underflow occured), then fill the rest of the frames with
/// zeros.
/// * `output` - The interleaved output buffer to write the resampled data to.
///
/// # Panics
///
/// * Panics if the number of output channels does not equal the number of channels
/// in this resampler.
/// * Panics if the number of frames in the output buffers is greater than
/// [`RtResampler::max_out_frames`].
/// * Also panics if the `interleaved` argument was `false` when this struct was
/// created.
pub fn process_interleaved(
&mut self,
mut on_frames_requested: impl FnMut(&mut [T]),
output: &mut [T],
) {
let num_channels = self.num_channels.get();
let out_frames = output.len() / num_channels;
assert!(out_frames <= self.max_out_frames);
if num_channels > 1 {
assert!(!self.intlv_buf.is_empty());
}
let mut frames_filled = if self.remaining_frames_in_out_buf > 0 {
let start_frame = self.out_buf_len - self.remaining_frames_in_out_buf;
let copy_frames = self.remaining_frames_in_out_buf.min(out_frames);
crate::interleave::interleave(&self.out_buf, output, start_frame, 0, copy_frames);
self.remaining_frames_in_out_buf -= copy_frames;
copy_frames
} else {
0
};
while frames_filled < out_frames {
if num_channels == 1 {
// Mono, no need for the temporary interleaved buffer.
(on_frames_requested)(&mut self.in_buf[0]);
} else {
(on_frames_requested)(&mut self.intlv_buf);
crate::interleave::deinterleave(
&self.intlv_buf,
&mut self.in_buf,
0,
0,
self.input_frames_max,
);
}
let (_, out_frames_processed) = self
.resampler
.process_into_buffer(&self.in_buf, &mut self.out_buf, None)
.unwrap();
self.out_buf_len = out_frames_processed;
let copy_frames = out_frames_processed.min(out_frames - frames_filled);
crate::interleave::interleave(&self.out_buf, output, 0, frames_filled, copy_frames);
self.remaining_frames_in_out_buf = self.out_buf_len - copy_frames;
frames_filled += copy_frames;
}
}
pub fn resampler_type(&self) -> &ResamplerType<T> {
&self.resampler
}
pub fn resampler_type_mut(&mut self) -> &mut ResamplerType<T> {
&mut self.resampler
}
}
impl<T: Sample> Into<ResamplerType<T>> for RtResampler<T> {
fn into(self) -> ResamplerType<T> {
self.resampler
}
}