fixed_resample/non_realtime.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
use std::num::NonZeroUsize;
use rubato::Sample;
use crate::{ResampleQuality, ResamplerType};
/// An easy to use resampler for use in non-realtime applications.
pub struct NonRtResampler<T: Sample> {
resampler: ResamplerType<T>,
in_buf: Vec<Vec<T>>,
out_buf: Vec<Vec<T>>,
intlv_buf: Vec<T>,
in_buf_len: usize,
num_channels: NonZeroUsize,
input_frames_max: usize,
}
impl<T: Sample> NonRtResampler<T> {
/// Create a new non-realtime resampler.
///
/// * `in_sample_rate` - The sample rate of the input stream.
/// * `out_sample_rate` - The sample rate of the output stream.
/// * `num_channels` - The number of channels.
/// * `interleaved` - If you are planning to use [`NonRtResampler::process_interleaved`],
/// set this to `true`. Otherwise you can set this to `false` to save a bit of
/// memory.
/// * `quality` - The quality of the resampling algorithm.
///
/// # Panics
///
/// Panics if:
/// * `in_sample_rate == 0`
/// * `out_sample_rate == 0`
/// * `num_channels == 0`,
pub fn new(
in_sample_rate: u32,
out_sample_rate: u32,
num_channels: usize,
quality: ResampleQuality,
) -> Self {
let resampler =
ResamplerType::from_quality(in_sample_rate, out_sample_rate, num_channels, quality);
Self::from_custom(resampler)
}
/// Create a new non-realtime resampler using the given rubato resampler.
///
/// # Panics
/// Panics if `max_out_frames == 0`.
pub fn from_custom(resampler: impl Into<ResamplerType<T>>) -> Self {
let mut resampler: ResamplerType<T> = resampler.into();
let num_channels = resampler.num_channels();
assert!(num_channels > 0);
let input_frames_max = resampler.input_frames_max();
let output_frames_max = resampler.output_frames_max();
Self {
resampler,
in_buf: (0..num_channels)
.map(|_| vec![T::zero(); input_frames_max])
.collect(),
out_buf: (0..num_channels)
.map(|_| vec![T::zero(); output_frames_max])
.collect(),
intlv_buf: Vec::new(),
in_buf_len: 0,
num_channels: NonZeroUsize::new(num_channels).unwrap(),
input_frames_max,
}
}
/// Get the number of channels this resampler is configured for.
pub fn num_channels(&self) -> NonZeroUsize {
self.num_channels
}
/// Reset the resampler state and clear all internal buffers.
pub fn reset(&mut self) {
self.resampler.reset();
self.in_buf_len = 0;
}
/// Resample the given input data.
///
/// * `input` - The input data in interleaved format.
/// * `on_processed` - Called whenever there is new resampled data. This data is in
/// interleaved format.
/// * `is_last_packet` - Whether or not this is the last (or only) packet of data that
/// will be resampled. This ensures that any leftover samples in the internal resampler
/// are flushed to the output.
///
/// Note, this method is *NOT* realtime-safe.
pub fn process_interleaved(
&mut self,
input: &[T],
mut on_processed: impl FnMut(&[T]),
is_last_packet: bool,
) {
let num_channels = self.num_channels.get();
let total_in_frames = input.len() / num_channels;
if self.intlv_buf.is_empty() {
let alloc_frames = self.resampler.output_frames_max() * num_channels;
self.intlv_buf.reserve_exact(alloc_frames);
self.intlv_buf.resize(alloc_frames, T::zero());
}
let mut in_frames_copied = 0;
while in_frames_copied < total_in_frames {
if self.in_buf_len < self.input_frames_max {
let copy_frames = (self.input_frames_max - self.in_buf_len)
.min(total_in_frames - in_frames_copied);
crate::interleave::deinterleave(
input,
&mut self.in_buf,
in_frames_copied,
self.in_buf_len,
copy_frames,
);
self.in_buf_len += copy_frames;
in_frames_copied += copy_frames;
if self.in_buf_len < self.input_frames_max && !is_last_packet {
// Must wait for more input data before continuing.
return;
}
}
if is_last_packet && in_frames_copied == total_in_frames {
let mut is_first = true;
loop {
let (_, out_frames) = self
.resampler
.process_partial_into_buffer(
if is_first { Some(&self.in_buf) } else { None },
&mut self.out_buf,
None,
)
.unwrap();
is_first = false;
if num_channels == 1 {
// Mono, no need to copy to an intermediate buffer.
(on_processed)(&self.out_buf[0][..out_frames]);
} else {
crate::interleave::interleave(
&self.out_buf,
&mut self.intlv_buf,
0,
0,
out_frames,
);
(on_processed)(&self.intlv_buf[0..out_frames * num_channels]);
}
if out_frames < self.out_buf[0].len() {
break;
}
}
} else {
let (_, out_frames) = self
.resampler
.process_into_buffer(&self.in_buf, &mut self.out_buf, None)
.unwrap();
if num_channels == 1 {
// Mono, no need to copy to an intermediate buffer.
(on_processed)(&self.out_buf[0][..out_frames]);
} else {
crate::interleave::interleave(
&self.out_buf,
&mut self.intlv_buf,
0,
0,
out_frames,
);
(on_processed)(&self.intlv_buf[0..out_frames * num_channels]);
}
}
self.in_buf_len = 0;
}
}
/// Resample the given input data.
///
/// * `input` - The input data.
/// * `on_processed` - Called whenever there is new resampled data. The first argument
/// is the buffers containing the new data, and the second argument is the length of
/// the new data in frames (NOTE, the second argument may be less than the length of
/// the `Vec`s in the first argument).
/// * `is_last_packet` - Whether or not this is the last (or only) packet of data that
/// will be resampled. This ensures that any leftover samples in the internal resampler
/// are flushed to the output.
///
/// Note, this method is *NOT* realtime-safe.
pub fn process<Vin: AsRef<[T]>>(
&mut self,
input: &[Vin],
mut on_processed: impl FnMut(&[Vec<T>], usize),
is_last_packet: bool,
) {
let in_ch_0 = input[0].as_ref();
let total_in_frames = in_ch_0.len();
let mut in_frames_copied = 0;
while in_frames_copied < total_in_frames {
if self.in_buf_len < self.input_frames_max {
let copy_frames = (self.input_frames_max - self.in_buf_len)
.min(total_in_frames - in_frames_copied);
self.in_buf[0][self.in_buf_len..self.in_buf_len + copy_frames]
.copy_from_slice(&in_ch_0[in_frames_copied..in_frames_copied + copy_frames]);
for (in_buf_ch, in_ch) in self.in_buf.iter_mut().zip(input.iter()).skip(1) {
let in_ch = in_ch.as_ref();
in_buf_ch[self.in_buf_len..self.in_buf_len + copy_frames]
.copy_from_slice(&in_ch[in_frames_copied..in_frames_copied + copy_frames]);
}
self.in_buf_len += copy_frames;
in_frames_copied += copy_frames;
if self.in_buf_len < self.input_frames_max && !is_last_packet {
// Must wait for more input data before continuing.
return;
}
}
if is_last_packet && in_frames_copied == total_in_frames {
let mut is_first = true;
loop {
let (_, out_frames) = self
.resampler
.process_partial_into_buffer(
if is_first { Some(&self.in_buf) } else { None },
&mut self.out_buf,
None,
)
.unwrap();
is_first = false;
(on_processed)(self.out_buf.as_slice(), out_frames);
if out_frames < self.out_buf[0].len() {
break;
}
}
} else {
let (_, out_frames) = self
.resampler
.process_into_buffer(&self.in_buf, &mut self.out_buf, None)
.unwrap();
(on_processed)(self.out_buf.as_slice(), out_frames);
}
self.in_buf_len = 0;
}
}
pub fn resampler_type(&self) -> &ResamplerType<T> {
&self.resampler
}
pub fn resampler_type_mut(&mut self) -> &mut ResamplerType<T> {
&mut self.resampler
}
}
impl<T: Sample> Into<ResamplerType<T>> for NonRtResampler<T> {
fn into(self) -> ResamplerType<T> {
self.resampler
}
}