1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
//! # `first-err`
//!
//! Find first `Err` in `Iterator<Result<T, E>>` and allow to iterating continuously.
//!
//! This crate is specifically designed to replace the following pattern without allocation:
//!
//! ```txt
//! // iter: impl Iterator<Result<T, E>>
//! iter.collect::<Result<Vec<T>, E>>().map(|vec| vec.into_iter().foo() );
//! ```
//!
//!
//!
//! ## Features
//!
//! - Find first `Err` in `Iterator<Result<T, E>>` and allow to iterating continuously.
//! - Speed: rough on par with hand write loop, use lazy evaluation and without alloc.
//! - Minimized: `no_std`, no `alloc`, no dependency.
//!
//!
//!
//! ## Getting Started
//!
//! This crate help you to take first `Err` in a [`Result`] and keep iterating without
//! pay for allocation, here is a sample:
//!
//! ```rust
//! use first_err::FirstErr;
//!
//! # fn main() {
//! // Everything is Ok.
//! let ans = [Ok::<u8, u8>(0), Ok(1), Ok(2)]
//!     .into_iter()
//!     .first_err_or_else(|iter| iter.sum::<u8>());
//! assert_eq!(ans, Ok(3));
//!
//! // Contains some `Err` values.
//! let ans = [Ok::<u8, u8>(0), Err(1), Err(2)]
//!     .into_iter()
//!     .first_err_or_else(|iter| iter.sum::<u8>());
//! assert_eq!(ans, Err(1));
//! # }
//! ```
//!
//! See [`FirstErr::first_err_or_else()`] for more detail.
//!
//!
//!
//! ## Why
//!
//! In Rust, I always encountered a kind of pattern which is I need to do something on all
//! items within an iterator, and should also cancel as soon as possible if any error is
//! found in current working layer. But, if no error found, the iterator should able to run
//! continuously and allow me to do further transform.
//!
//! The pattern typically looks as follows:
//!
//! ```rust
//! # fn main() {
//! let array: [Result<u8, u8>; 3] = [Ok(0), Err(1), Err(2)];
//!
//! fn fallible_sum(iter: impl IntoIterator<Item = Result<u8, u8>>) -> Result<u8, u8> {
//!     let sum = iter
//!         .into_iter()
//!         .collect::<Result<Vec<_>, _>>()?    // early return (and a vec alloc in here)
//!         .into_iter()                        // continue iterate next layer ...
//!         .sum();
//!
//!     Ok(sum)
//! }
//!
//! let ans = fallible_sum(array);
//! assert_eq!(ans, Err(1));
//! # }
//! ```
//!
//! In theory, this allocation is not necessary. We can just write that code as an old good
//! loop:
//!
//! ```rust
//! # fn main() {
//! let array: [Result<u8, u8>; 3] = [Ok(0), Err(1), Err(2)];
//!
//! fn fallible_sum(iter: impl IntoIterator<Item = Result<u8, u8>>) -> Result<u8, u8> {
//!     let mut sum = 0;
//!     for res in iter {
//!         let val = res?;                     // early return, no alloc
//!         sum += val;
//!     }
//!
//!     Ok(sum)
//! }
//!
//! let ans = fallible_sum(array);
//! assert_eq!(ans, Err(1))
//! # }
//! ```
//!
//! Using a loop is not bad at all. But for some situation, I would like to keep iterator
//! chainable as much as possible. This crate offers another approach to achieve it.
//!
//! And even further, sometime life may not simple like previous example. consider is one:
//!
//! ```rust
//! # fn main() {
//! // The second layer `Result` is usually created by further transform after the first layer
//! // `Result` be processed. But for the sake of simplicity, we've just use pre-defined values.
//! let array: [Result<Result<u8, u8>, u8>; 3] = [Ok(Ok(0)), Ok(Err(1)), Err(2)];
//!
//! fn fallible_sum(
//!     iter: impl IntoIterator<Item = Result<Result<u8, u8>, u8>>
//! ) -> Result<u8, u8> {
//!     // take "first `Err`" layer by layer, or the sum value.
//!     let sum = iter
//!         .into_iter()
//!         .collect::<Result<Vec<Result<u8, u8>>, u8>>()?
//!         .into_iter()
//!         .collect::<Result<Vec<u8>, u8>>()?
//!         .into_iter()
//!         .sum();
//!
//!     Ok(sum)
//! }
//!
//! let ans = fallible_sum(array);
//! assert_eq!(ans, Err(2));
//! # }
//! ```
//!
//! Above logic may little hard to write as a loop without alloc. But this crate can do it
//! for you:
//!
//! ```rust
//! # use first_err::FirstErr;
//! #
//! # fn main() {
//! let array: [Result<Result<u8, u8>, u8>; 3] = [Ok(Ok(0)), Ok(Err(1)), Err(2)];
//!
//! fn fallible_sum(
//!     iter: impl IntoIterator<Item = Result<Result<u8, u8>, u8>>
//! ) -> Result<u8, u8> {
//!     iter
//!         .into_iter()
//!         .first_err_or_else(|iter1| { // iter1 = impl Iterator<Item = Result<u8, u8>>
//!             iter1.first_err_or_else(|iter2| { // iter2 = impl Iterator<Item = u8>
//!                 iter2.sum::<u8>()
//!             })
//!         })
//!         .and_then(|res_res| res_res)
//! }
//!
//! let ans = fallible_sum(array);
//! assert_eq!(ans, Err(2));
//! # }
//! ```
//!
//!
//!
//! ## Benchmark
//!
//! This crate's performance character is designed for rough on par with hand write loop.
//! But compiler may do some better optimization for one or another in difference situations.
//!
//! If you want do benchmark by yourself, use follows command:
//!
//! ```sh
//! cargo bench --bench benchmark -- --output-format bencher
//! ```
//!
//! And don't forget check which code I actual bench in `benches` folder.

#![no_std]

/// Iterator can take first error from inner iterator.
///
/// See [`FirstErr::first_err_or_else()`] for more detail.
#[derive(Debug)]
pub struct FirstErrIter<I, T, E>
where
    I: Iterator<Item = Result<T, E>>,
{
    /// Internal iterator.
    inner: I,

    /// The first `Err` when iterating `inner`.
    first_err: Option<E>,
}

impl<I, T, E> FirstErrIter<I, T, E>
where
    I: Iterator<Item = Result<T, E>>,
{
    fn consume_until_first_err(mut self) -> Option<E> {
        if self.first_err.is_none() {
            // try to found an error, or just run through the whole iterator.
            for _ in &mut self {}
        }

        self.first_err.take()
    }
}

impl<I, T, E> Iterator for FirstErrIter<I, T, E>
where
    I: Iterator<Item = Result<T, E>>,
{
    type Item = T;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        if self.first_err.is_some() {
            return None;
        }

        match self.inner.next() {
            // ok value
            Some(Ok(t)) => Some(t),

            // find first Err
            Some(Err(e)) => {
                self.first_err = Some(e);
                None
            }

            // exhausted
            None => None,
        }
    }
}

/// This trait provides `first_err_or_else()` method on all `Iterator<Item = Result<T, E>>`.
pub trait FirstErr<I, T, E> {
    /// Return the first `Err` item in current iterator or an `Ok` value return by `f` closure.
    /// If no error found, this method will consume all items before return.
    ///
    /// The iterator argument of closure produce the same sequence but stop from first `Err` item.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use first_err::FirstErr;
    ///
    /// # fn main() {
    /// // Everything is Ok.
    /// let ans = [Ok::<u8, u8>(0), Ok(1), Ok(2)]
    ///     .into_iter()
    ///     .first_err_or_else(|iter| iter.sum::<u8>());
    /// assert_eq!(ans, Ok(3));
    ///
    /// // Contains some `Err` values.
    /// let ans = [Ok::<u8, u8>(0), Err(1), Err(2)]
    ///     .into_iter()
    ///     .first_err_or_else(|iter| iter.sum::<u8>());
    /// assert_eq!(ans, Err(1));
    /// # }
    /// ```
    ///
    /// # Guarantees
    ///
    /// ## Not need to consume inner iterator manually:
    ///
    /// ```rust
    /// # use first_err::FirstErr;
    /// #
    /// # fn main() {
    /// let ans = [Ok::<u8, u8>(0), Err(1), Err(2)]
    ///     .into_iter()
    ///     .first_err_or_else(|_iter| {}); // not need to consume `_iter` iterator,
    /// assert_eq!(ans, Err(1));            // and the result still correct.
    /// # }
    /// ```
    ///
    /// ## Outer iterator will be evaluated lazily:
    ///
    /// ```rust
    /// # use first_err::FirstErr;
    /// # use std::cell::RefCell;
    /// #
    /// # fn main() {
    /// let mut vec = RefCell::new(vec![]);
    ///
    /// let mut ans = [Ok::<u8, u8>(0), Ok(1), Err(2), Ok(3)]
    ///     .into_iter()
    ///     .inspect(|res| { vec.borrow_mut().push(*res) })         // push value from outer
    ///     .first_err_or_else(|iter| {
    ///         iter
    ///             .inspect(|n| { vec.borrow_mut().push(Ok(42)) }) // push value from inner
    ///             .sum::<u8>()
    ///     });
    ///
    /// assert_eq!(ans, Err(2));
    /// assert_eq!(
    ///     vec.into_inner(),
    ///     vec![Ok(0), Ok(42), Ok(1), Ok(42), Err(2)],
    /// );
    /// # }
    /// ```
    ///
    /// ## Caller can't leak the inner iterator out from `f` closure:
    ///
    /// ```rust,compile_fail
    /// # use first_err::FirstErr;
    /// #
    /// # fn main() {
    /// let iter = [Ok::<u8, u8>(0), Err(1), Err(2)]
    ///     .into_iter()
    ///     .first_err_or_else(|iter| iter); // compile error: can't leak `iter` out
    /// # }
    /// ```
    fn first_err_or_else<F, O>(self, f: F) -> Result<O, E>
    where
        F: FnOnce(&mut FirstErrIter<Self, T, E>) -> O;

    /// Return the first `Err` item in current iterator or an `Ok` value. If no error found,
    /// this method will consume all items before return.
    ///
    /// This method is a shorter version of [`first_err_or_else(|_| value)`](Self::first_err_or_else).
    ///
    /// # Examples
    ///
    /// ```rust
    /// # use first_err::FirstErr;
    /// #
    /// # fn main() {
    /// // Everything is Ok.
    /// let ans = [Ok::<u8, u8>(0), Ok(1), Ok(2)]
    ///     .into_iter()
    ///     .first_err_or("foo");
    /// assert_eq!(ans, Ok("foo"));
    ///
    /// // Contains some `Err` values.
    /// let ans = [Ok::<u8, u8>(0), Err(1), Err(2)]
    ///     .into_iter()
    ///     .first_err_or("foo");
    /// assert_eq!(ans, Err(1));
    /// # }
    /// ```
    fn first_err_or<O>(self, value: O) -> Result<O, E>;
}

impl<I, T, E> FirstErr<I, T, E> for I
where
    I: Iterator<Item = Result<T, E>>,
{
    #[inline]
    fn first_err_or_else<F, O>(self, f: F) -> Result<O, E>
    where
        F: FnOnce(&mut FirstErrIter<Self, T, E>) -> O,
    {
        let mut first_err_iter = FirstErrIter {
            inner: self,
            first_err: None,
        };

        let output = f(&mut first_err_iter);

        // Take the `first_err` back if err exists in whole iterator.
        match first_err_iter.consume_until_first_err() {
            Some(e) => Err(e),
            None => Ok(output),
        }
    }

    #[inline]
    fn first_err_or<O>(self, value: O) -> Result<O, E> {
        self.first_err_or_else(|_| value)
    }
}

#[cfg(test)]
mod tests {
    use super::FirstErr;

    #[test]
    fn test_first_err_or_else_with_1_layer_data_and_without_err() {
        let ans = [Ok::<u8, u8>(0), Ok(1), Ok(2), Ok(3), Ok(4)]
            .into_iter()
            .first_err_or_else(|iter1| iter1.sum::<u8>());

        assert_eq!(ans, Ok(10));
    }

    #[test]
    fn test_first_err_or_else_with_1_layer_data_and_with_err() {
        let ans = [Ok::<u8, u8>(0), Ok(1), Err(2), Ok(3), Ok(4)]
            .into_iter()
            .first_err_or_else(|iter1| iter1.sum::<u8>());

        assert_eq!(ans, Err(2));
    }

    #[test]
    fn test_first_err_or_else_with_2_layer_data_and_outmost_err_in_layer_1() {
        let ans = [
            Ok::<Result<u8, u8>, Result<u8, u8>>(Ok::<u8, u8>(0)),
            Ok(Err(1)),
            Err(Ok(2)),
            Ok(Ok(3)),
            Ok(Ok(4)),
        ]
        .into_iter()
        .first_err_or_else(|iter1| {
            iter1
                .map(|x| x) // could chain other ops
                .first_err_or_else(|iter2| iter2.sum::<u8>())
        });

        assert_eq!(ans, Err(Ok(2)));
    }

    #[test]
    fn test_first_err_or_else_with_2_layer_data_and_outmost_err_in_layer_2() {
        let ans = [
            Ok::<Result<u8, u8>, Result<u8, u8>>(Ok::<u8, u8>(0)),
            Ok(Ok(1)),
            Ok(Err(2)),
            Ok(Err(3)),
            Ok(Ok(4)),
        ]
        .into_iter()
        .first_err_or_else(|iter1| {
            iter1
                .map(|x| x) // could chain other ops
                .first_err_or_else(|iter2| iter2.sum::<u8>())
        });

        assert_eq!(ans, Ok(Err(2)));
    }

    #[test]
    fn test_first_err_or_else_with_3_layer_data_and_outmost_err_in_layer_2() {
        let ans = [
            Ok::<Result<Result<u8, u8>, Result<u8, u8>>, Result<Result<u8, u8>, Result<u8, u8>>>(
                Ok(Ok(0)),
            ),
            Ok(Ok(Ok(1))),
            Ok(Ok(Err(2))),
            Ok(Err(Ok(3))),
            Ok(Ok(Ok(4))),
        ]
        .into_iter()
        .first_err_or_else(|iter1| {
            iter1
                .map(|x| x) // could chain other ops
                .first_err_or_else(|iter2| {
                    iter2
                        .map(|x| x) // could chain other ops
                        .first_err_or_else(|iter3| iter3.sum::<u8>())
                })
        });

        assert_eq!(ans, Ok(Err(Ok(3))));
    }

    #[test]
    fn test_first_err_or_else_not_need_to_consume_iter_manually() {
        let ans = [Ok::<u8, u8>(0), Err(1), Err(2)]
            .into_iter()
            .first_err_or_else(|_iter| {});

        assert_eq!(ans, Err(1));
    }

    /// For the most cases, API user should not notice the inner iterator's `.next()`
    /// function be called how many times due to it's already consumed. But if inner
    /// iterator has some side-effect, the behavior still observable, and user maybe
    /// rely with it.
    ///
    /// So here is a test to make sure the behavior keep the same when code changed.
    #[test]
    fn test_first_err_or_else_not_call_next_on_inner_iter_after_first_err() {
        let mut inner_next_count = 0;

        [Ok::<u8, u8>(0), Err(1), Err(2)]
            .into_iter()
            .inspect(|_| inner_next_count += 1) // side-effect
            .first_err_or_else(|iter| {
                // exhaust whole iter.
                for _ in &mut *iter {}

                // call iter.next() after the iter already exhausted.
                assert_eq!(iter.next(), None);
            })
            .ok();

        assert_eq!(inner_next_count, 2);
    }

    #[test]
    fn test_first_err_or_else_use_lazy_evaluation() {
        use core::cell::{Cell, RefCell};

        #[derive(Debug, Clone, Copy, PartialEq, Eq)]
        enum Trace {
            None,
            Outer(Result<u8, u8>),
            Inner(u8),
        }

        // if index >= N, it will panic.
        fn record_trace<const N: usize>(traces: &RefCell<[Trace; N]>, idx: &Cell<usize>, v: Trace) {
            let i = idx.get();
            traces.borrow_mut()[i] = v;
            idx.set(i + 1);
        }

        // already known N = 5 within [_; N] in this test case.
        // We don't use Vec here just bacause want to avoid `alloc` crate.
        let traces = RefCell::new([Trace::None; 5]);

        let index = Cell::new(0);

        let ans = [Ok::<u8, u8>(0), Ok(1), Err(2), Ok(3)]
            .iter()
            .cloned()
            // record value from outer
            .inspect(|&res| record_trace(&traces, &index, Trace::Outer(res)))
            .first_err_or_else(|iter| {
                iter
                    // record value from inner
                    .inspect(|&n| record_trace(&traces, &index, Trace::Inner(n)))
                    .sum::<u8>()
            });

        assert_eq!(ans, Err(2));
        assert_eq!(
            traces.into_inner(),
            [
                Trace::Outer(Ok(0)),
                Trace::Inner(0),
                Trace::Outer(Ok(1)),
                Trace::Inner(1),
                Trace::Outer(Err(2))
            ]
        );
    }
}