firewheel_graph/graph/compiler.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
use smallvec::SmallVec;
use std::{collections::VecDeque, rc::Rc};
use thunderdome::Arena;
use super::{error::CompileGraphError, NodeID};
mod schedule;
pub use schedule::{CompiledSchedule, ScheduleHeapData};
use schedule::{InBufferAssignment, OutBufferAssignment, ScheduledNode};
pub struct NodeEntry<N> {
pub id: NodeID,
/// The number of input ports used by the node
pub num_inputs: u32,
/// The number of output ports used by the node
pub num_outputs: u32,
pub weight: N,
/// The edges connected to this node's input ports.
incoming: SmallVec<[Edge; 4]>,
/// The edges connected to this node's output ports.
outgoing: SmallVec<[Edge; 4]>,
}
impl<N> NodeEntry<N> {
pub fn new(num_inputs: usize, num_outputs: usize, weight: N) -> Self {
Self {
id: NodeID(thunderdome::Index::DANGLING),
num_inputs: num_inputs as u32,
num_outputs: num_outputs as u32,
weight,
incoming: SmallVec::new(),
outgoing: SmallVec::new(),
}
}
}
/// The index for an input port on a particular [Node].
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct InPortIdx(pub u32);
impl From<u32> for InPortIdx {
fn from(value: u32) -> Self {
Self(value)
}
}
/// The index for an output port on a particular [Node].
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct OutPortIdx(pub u32);
impl From<u32> for OutPortIdx {
fn from(value: u32) -> Self {
Self(value)
}
}
/// A globally unique identifier for an [Edge].
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct EdgeID(pub(super) thunderdome::Index);
/// An [Edge] is a connection from source node and port to a
/// destination node and port.
#[derive(Copy, Clone, Debug, Hash, Eq, PartialEq)]
pub struct Edge {
pub id: EdgeID,
/// The ID of the source node used by this edge.
pub src_node: NodeID,
/// The ID of the source port used by this edge.
pub src_port: OutPortIdx,
/// The ID of the destination node used by this edge.
pub dst_node: NodeID,
/// The ID of the destination port used by this edge.
pub dst_port: InPortIdx,
}
/// A reference to an abstract buffer during buffer allocation.
#[derive(Debug, Clone, Copy)]
struct BufferRef {
/// The index of the buffer
idx: usize,
/// The generation, or the nth time this buffer has
/// been assigned to a different edge in the graph.
generation: usize,
}
/// An allocator for managing and reusing [BufferRef]s.
#[derive(Debug, Clone)]
struct BufferAllocator {
/// A list of free buffers that may be reallocated
free_list: Vec<BufferRef>,
/// The maximum number of buffers used
count: usize,
}
impl BufferAllocator {
/// Create a new allocator, `num_types` defines the number
/// of buffer types we may allocate.
fn new(initial_capacity: usize) -> Self {
Self {
free_list: Vec::with_capacity(initial_capacity),
count: 0,
}
}
/// Acquire a new buffer
fn acquire(&mut self) -> Rc<BufferRef> {
let entry = self.free_list.pop().unwrap_or_else(|| {
let idx = self.count;
self.count += 1;
BufferRef { idx, generation: 0 }
});
Rc::new(BufferRef {
idx: entry.idx,
generation: entry.generation,
})
}
/// Release a BufferRef
fn release(&mut self, buffer_ref: Rc<BufferRef>) {
if Rc::strong_count(&buffer_ref) == 1 {
self.free_list.push(BufferRef {
idx: buffer_ref.idx,
generation: buffer_ref.generation + 1,
});
}
}
/// Consume the allocator to return the maximum number of buffers used
fn num_buffers(self) -> usize {
self.count
}
}
/// Main compilation algorithm
pub fn compile<'a, N>(
nodes: &mut Arena<NodeEntry<N>>,
edges: &mut Arena<Edge>,
graph_in_id: NodeID,
graph_out_id: NodeID,
max_block_frames: usize,
) -> Result<CompiledSchedule, CompileGraphError> {
Ok(
GraphIR::preprocess(nodes, edges, graph_in_id, graph_out_id, max_block_frames)
.sort_topologically(true)?
.solve_buffer_requirements()?
.merge(),
)
}
pub fn cycle_detected<'a, N>(
nodes: &'a mut Arena<NodeEntry<N>>,
edges: &'a mut Arena<Edge>,
graph_in_id: NodeID,
graph_out_id: NodeID,
) -> bool {
if let Err(CompileGraphError::CycleDetected) =
GraphIR::<N>::preprocess(nodes, edges, graph_in_id, graph_out_id, 0)
.sort_topologically(false)
{
true
} else {
false
}
}
/// Internal IR used by the compiler algorithm. Built incrementally
/// via the compiler passes.
struct GraphIR<'a, N> {
nodes: &'a mut Arena<NodeEntry<N>>,
edges: &'a mut Arena<Edge>,
/// The topologically sorted schedule of the graph. Built internally.
schedule: Vec<ScheduledNode>,
/// The maximum number of buffers used.
max_num_buffers: usize,
graph_in_id: NodeID,
graph_out_id: NodeID,
graph_in_idx: usize,
graph_out_idx: usize,
max_in_buffers: usize,
max_out_buffers: usize,
max_block_frames: usize,
}
impl<'a, N> GraphIR<'a, N> {
/// Construct a [GraphIR] instance from lists of nodes and edges, building
/// up the adjacency table and creating an empty schedule.
fn preprocess(
nodes: &'a mut Arena<NodeEntry<N>>,
edges: &'a mut Arena<Edge>,
graph_in_id: NodeID,
graph_out_id: NodeID,
max_block_frames: usize,
) -> Self {
assert!(nodes.contains(graph_in_id.0));
assert!(nodes.contains(graph_out_id.0));
for (_, node) in nodes.iter_mut() {
node.incoming.clear();
node.outgoing.clear();
}
for (_, edge) in edges.iter() {
nodes[edge.src_node.0].outgoing.push(*edge);
nodes[edge.dst_node.0].incoming.push(*edge);
debug_assert_ne!(edge.src_node, graph_out_id);
debug_assert_ne!(edge.dst_node, graph_in_id);
}
Self {
nodes,
edges,
schedule: vec![],
max_num_buffers: 0,
graph_in_id,
graph_out_id,
graph_in_idx: 0,
graph_out_idx: 0,
max_in_buffers: 0,
max_out_buffers: 0,
max_block_frames,
}
}
/// Sort the nodes topologically using Kahn's algorithm.
/// https://www.geeksforgeeks.org/topological-sorting-indegree-based-solution/
fn sort_topologically(mut self, build_schedule: bool) -> Result<Self, CompileGraphError> {
let mut in_degree = vec![0i32; self.nodes.capacity()];
let mut queue = VecDeque::with_capacity(self.nodes.len());
if build_schedule {
self.schedule.reserve(self.nodes.len());
}
let mut num_visited = 0;
// Calculate in-degree of each vertex
for (_, node_entry) in self.nodes.iter() {
for edge in node_entry.outgoing.iter() {
in_degree[edge.dst_node.0.slot() as usize] += 1;
}
}
// Enqueue vertices with 0 in-degree
for (node_id, node_entry) in self.nodes.iter() {
if node_entry.incoming.is_empty() {
queue.push_back(node_id);
}
}
// BFS traversal
while let Some(node_id) = queue.pop_front() {
num_visited += 1;
let node_entry = &self.nodes[node_id];
// Reduce in-degree of adjacent vertices
for edge in node_entry.outgoing.iter() {
in_degree[edge.dst_node.0.slot() as usize] -= 1;
// If in-degree becomes 0, enqueue it
if in_degree[edge.dst_node.0.slot() as usize] == 0 {
queue.push_back(edge.dst_node.0);
}
}
if build_schedule {
if node_id == self.graph_in_id.0 {
self.graph_in_idx = self.schedule.len();
} else if node_id == self.graph_out_id.0 {
self.graph_out_idx = self.schedule.len();
}
self.schedule.push(ScheduledNode::new(NodeID(node_id)));
}
}
// If not all vertices are visited, cycle
if num_visited != self.nodes.len() {
return Err(CompileGraphError::CycleDetected);
}
Ok(self)
}
fn solve_buffer_requirements(mut self) -> Result<Self, CompileGraphError> {
let mut allocator = BufferAllocator::new(64);
let mut assignment_table: Arena<Rc<BufferRef>> =
Arena::with_capacity(self.edges.capacity());
let mut buffers_to_release: Vec<Rc<BufferRef>> = Vec::with_capacity(64);
for entry in &mut self.schedule {
// Collect the inputs to the algorithm, the incoming/outgoing edges of this node.
let node_entry = &self.nodes[entry.id.0];
buffers_to_release.clear();
if buffers_to_release.capacity()
< node_entry.num_inputs as usize + node_entry.num_outputs as usize
{
buffers_to_release.reserve(
node_entry.num_inputs as usize + node_entry.num_outputs as usize
- buffers_to_release.capacity(),
);
}
entry
.input_buffers
.reserve_exact(node_entry.num_inputs as usize);
entry
.output_buffers
.reserve_exact(node_entry.num_outputs as usize);
for port_idx in 0..node_entry.num_inputs as u32 {
let port_idx = InPortIdx(port_idx);
let edges: SmallVec<[&Edge; 4]> = node_entry
.incoming
.iter()
.filter(|edge| edge.dst_port == port_idx)
.collect();
if edges.is_empty() {
// Case 1: The port is an input and it is unconnected. Acquire a buffer, and
// assign it. The buffer must be cleared. Release the buffer once the
// node assignments are done.
let buffer = allocator.acquire();
entry.input_buffers.push(InBufferAssignment {
buffer_index: buffer.idx,
_generation: buffer.generation,
should_clear: true,
});
buffers_to_release.push(buffer);
} else if edges.len() == 1 {
// Case 2: The port is an input, and has exactly one incoming edge. Lookup the
// corresponding buffer and assign it. Buffer should not be cleared.
// Release the buffer once the node assignments are done.
let buffer = assignment_table
.remove(edges[0].id.0)
.expect("No buffer assigned to edge!");
entry.input_buffers.push(InBufferAssignment {
buffer_index: buffer.idx,
_generation: buffer.generation,
should_clear: false,
});
buffers_to_release.push(buffer);
} else {
return Err(CompileGraphError::ManyToOneError(entry.id, port_idx));
}
}
for port_idx in 0..node_entry.num_outputs as u32 {
let port_idx = OutPortIdx(port_idx);
let edges: SmallVec<[&Edge; 4]> = node_entry
.outgoing
.iter()
.filter(|edge| edge.src_port == port_idx)
.collect();
if edges.is_empty() {
// Case 1: The port is an output and it is unconnected. Acquire a buffer and
// assign it. The buffer does not need to be cleared. Release the
// buffer once the node assignments are done.
let buffer = allocator.acquire();
entry.output_buffers.push(OutBufferAssignment {
buffer_index: buffer.idx,
_generation: buffer.generation,
});
buffers_to_release.push(buffer);
} else {
// Case 2: The port is an output. Acquire a buffer, and add to the assignment
// table with any corresponding edge IDs. For each edge, update the
// assigned buffer table. Buffer should not be cleared or released.
let buffer = allocator.acquire();
for edge in &edges {
assignment_table.insert_at(edge.id.0, Rc::clone(&buffer));
}
entry.output_buffers.push(OutBufferAssignment {
buffer_index: buffer.idx,
_generation: buffer.generation,
});
}
}
for buffer in buffers_to_release.drain(..) {
allocator.release(buffer);
}
self.max_in_buffers = self.max_in_buffers.max(node_entry.num_inputs as usize);
self.max_out_buffers = self.max_out_buffers.max(node_entry.num_outputs as usize);
}
self.max_num_buffers = allocator.num_buffers() as usize;
Ok(self)
}
/// Merge the GraphIR into a [CompiledSchedule].
fn merge(self) -> CompiledSchedule {
CompiledSchedule::new(
self.schedule,
self.graph_in_idx,
self.graph_out_idx,
self.max_block_frames,
self.max_num_buffers,
self.max_in_buffers,
self.max_out_buffers,
)
}
}