1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
use super::{BodyBytes, BodyBytesMut, PacketBytes, PacketError};

use crypto::cipher::{Key, Mac};

use bytes::{Bytes, BytesMut, BytesRead, BytesWrite, BytesSeek};


const OFFSET: usize = Mac::LEN;

/// Encrypted bytes
/// 
/// Data Layout
/// +-----------+-----------+
/// |   Header  |   Body    |
/// +-----+-----+-----+-----+
/// | Mac | Ctn | Mac | Ctn |
/// +-----+-----+-----+-----+
///
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct EncryptedBytes {
	bytes: Vec<u8>,
	header_len: usize
}

impl PacketBytes for EncryptedBytes {
	fn new(header_len: usize) -> Self {
		Self {
			// 1 offset for header
			// 1 offset for body
			bytes: vec![0; OFFSET * 2 + header_len],
			header_len
		}
	}

	fn header(&self) -> Bytes<'_> {
		self.bytes[OFFSET..][..self.header_len].into()
	}

	fn header_mut(&mut self) -> BytesMut<'_> {
		(&mut self.bytes[OFFSET..][..self.header_len]).into()
	}

	fn full_header_mut(&mut self) -> BytesMut<'_> {
		(&mut self.bytes[..OFFSET + self.header_len]).into()
	}

	fn body(&self) -> BodyBytes<'_> {
		BodyBytes::new(&self.bytes[OFFSET * 2..][self.header_len..])
	}

	fn body_mut(&mut self) -> BodyBytesMut<'_> {
		BodyBytesMut::new(self.header_len + OFFSET * 2, &mut self.bytes)
	}

	fn full_body_mut(&mut self) -> BytesMut<'_> {
		(&mut self.bytes[OFFSET + self.header_len..]).into()
	}
}

impl EncryptedBytes {
	pub(crate) fn has_body(&self) -> bool {
		self.bytes.len() > OFFSET * 2 + self.header_len
	}

	// slice without body mac is returned
	pub(crate) fn as_slice(&self) -> &[u8] {
		if self.has_body() {
			&*self.bytes
		} else {
			// if we don't have any body
			// remove the space saved for it
			&self.bytes[..self.bytes.len() - OFFSET]
		}
	}

	pub(crate) fn encrypt(&mut self, key: &mut Key) {

		// encrypt header
		let mut header: BytesMut = self.full_header_mut().into();
		header.seek(OFFSET);
		let mac = key.encrypt(header.remaining_mut());
		header.seek(0);
		header.write(&mac.into_bytes());

		if !self.has_body() {
			return
		}

		// encrypt body
		let mut body: BytesMut = self.full_body_mut().into();
		body.seek(OFFSET);
		let mac = key.encrypt(body.remaining_mut());
		body.seek(0);
		body.write(&mac.into_bytes());

	}

	pub(crate) fn decrypt_header(
		&mut self,
		key: &mut Key
	) -> Result<(), PacketError> {
		let mut header: BytesMut = self.full_header_mut().into();
		let mac = Mac::from_slice(header.read(OFFSET));
		key.decrypt(header.remaining_mut(), &mac)
			.map_err(|_| PacketError::MacNotEqual)
	}

	pub(crate) fn decrypt_body(
		&mut self,
		key: &mut Key
	) -> Result<(), PacketError> {
		let mut body: BytesMut = self.full_body_mut().into();
		let mac = Mac::from_slice(body.read(OFFSET));
		key.decrypt(body.remaining_mut(), &mac)
			.map_err(|_| PacketError::MacNotEqual)
	}
}

#[cfg(test)]
mod tests {

	use super::*;
	use crate::packet::bytes::tests::test_gen_msg;
	use crypto::cipher::{Keypair, Nonce};

	#[test]
	fn encrypted_bytes() {
		test_gen_msg::<EncryptedBytes>();
	}

	fn generate_key() -> Key {
		let alice = Keypair::new();
		let bob = Keypair::new();

		let ssk = alice.diffie_hellman(bob.public());

		let nonce = Nonce::from([1u8; 24]);
		ssk.to_key(nonce)
	}

	#[test]
	fn crypto() {

		let header = [10u8; 30];
		let mut bytes = EncryptedBytes::new(header.len());
		bytes.header_mut().write(&header);

		let body_buf = [20u8; 30];
		let mut body = bytes.body_mut();
		body.write(&body_buf);

		let mut alice_key = generate_key();
		let mut alice_key_2 = alice_key.dublicate();
		let mut bob_key = alice_key.dublicate();

		// should encrypt header
		bytes.encrypt(&mut alice_key);

		// validate header mac
		let mut mut_header = header.clone();
		let mac_r = alice_key_2.encrypt(&mut mut_header);
		assert_eq!(mac_r.into_bytes(), bytes.full_header_mut().as_mut()[..16]);
		assert_eq!(mut_header, bytes.header().as_slice());

		// validate body mac
		let mut mut_body = body_buf.clone();
		let mac_r = alice_key_2.encrypt(&mut mut_body);
		assert_eq!(mac_r.into_bytes()[..], bytes.full_body_mut().as_mut()[..16]);
		assert_eq!(mut_body, bytes.body().as_slice());

		// now decrypt everything
		bytes.decrypt_header(&mut bob_key).unwrap();
		bytes.decrypt_body(&mut bob_key).unwrap();

		assert_eq!(bytes.header().as_slice(), header);
		assert_eq!(bytes.body().as_slice(), body_buf);


	}

	#[test]
	fn empty_msg() {

		let header = [10u8; 30];
		let mut bytes = EncryptedBytes::new(header.len());

		assert!(!bytes.has_body());
		assert_eq!(bytes.body().len(), 0);
		// assert_eq!(bytes.as_slice().len(), 16 + 30);

		bytes.body_mut().write_u8(10);
		assert!(bytes.has_body());
		assert_eq!(bytes.body().len(), 1);
		// assert_eq!(bytes.as_slice().len(), 16 + 30 + 16 + 1);
		assert_eq!(bytes.body().read_u8(), 10);

		bytes.body_mut().resize(0);
		assert!(!bytes.has_body());
		assert_eq!(bytes.body().len(), 0);
		// assert_eq!(bytes.as_slice().len(), 16 + 30);

		bytes.body_mut().resize(1);
		assert!(bytes.has_body());
		assert_eq!(bytes.body().len(), 1);
		// assert_eq!(bytes.as_slice().len(), 16 + 30 + 16 + 1);
		assert_eq!(bytes.body().read_u8(), 0);

	}

}