1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
//! draw polygons
use crate::math::{madd, FExt};
use std::cmp::{max, min};
use std::f32::consts::TAU;
use vecto::Vec2;
use crate::Image;
impl<T: AsMut<[u8]> + AsRef<[u8]>, const CHANNELS: usize> Image<T, CHANNELS> {
/// Draws a filled polygon from a slice of points. Please close your poly. (first == last)
///
/// Borrowed from [imageproc](https://docs.rs/imageproc/latest/src/imageproc/drawing/polygon.rs.html#31), modified for less allocations.
/// ```
/// # use fimg::Image;
/// let mut i = Image::alloc(10, 10);
/// i.points(&[(1, 8), (3, 1), (8, 1), (6, 6), (8, 8), (1, 8)], [255]);
/// # assert_eq!(i.buffer(), b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\x00\x00\x00\xff\xff\xff\xff\xff\xff\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\x00\x00\x00\x00\xff\xff\xff\xff\xff\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00");
/// ```
pub fn points(&mut self, poly: &[(i32, i32)], c: [u8; CHANNELS]) {
if poly.len() <= 1 {
return;
}
let (mut y_max, mut y_min) = poly[..poly.len() - 1]
.iter()
.fold((i32::MIN, i32::MAX), |(max, min), &(_, y)| {
(y.max(max), y.min(min))
});
y_min = max(0, min(y_min, self.height() as i32 - 1));
y_max = max(0, min(y_max, self.height() as i32 - 1));
let mut intersections = vec![];
for y in y_min..=y_max {
for [p0, p1] in poly.array_windows::<2>() {
if p0.1 <= y && p1.1 >= y || p1.1 <= y && p0.1 >= y {
if p0.1 == p1.1 {
intersections.push(p0.0);
intersections.push(p1.0);
} else if p0.1 == y || p1.1 == y {
if p1.1 > y {
intersections.push(p0.0);
}
if p0.1 > y {
intersections.push(p1.0);
}
} else {
let fraction = (y - p0.1) as f32 / (p1.1 - p0.1) as f32;
let inter = madd(fraction, (p1.0 - p0.0) as f32, p0.0 as f32);
intersections.push(inter.round() as i32);
}
}
}
intersections.sort_unstable();
for &[x, y_] in intersections.array_chunks::<2>() {
let mut from = min(x, self.width() as i32);
let mut to = min(y_, self.width() as i32 - 1);
if from < self.width() as i32 && to >= 0 {
// check bounds
from = max(0, from);
to = max(0, to);
for x in from..=to {
// SAFETY: bounds are checked
unsafe { self.set_pixel(x as u32, y as u32, c) };
}
}
}
intersections.clear();
}
for &[(x1, y1), (x2, y2)] in poly.array_windows::<2>() {
self.line((x1, y1), (x2, y2), c);
}
}
/// Draws a filled quadrilateral.
/// This currently just uses [`Image::points`], but in the future this may change.
pub fn quad(
&mut self,
a: (i32, i32),
b: (i32, i32),
c: (i32, i32),
d: (i32, i32),
col: [u8; CHANNELS],
) {
self.points(&[a, b, c, d, a], col);
}
/// Draws a regular convex polygon with a specified number of sides, a radius, and a rotation (radians).
/// Prefer [`Image::circle`] over `poly(.., 600, ..)`.
/// Calls into [`Image::tri`] and [`Image::quad`].
/// ```
/// # use fimg::Image;
/// let mut i = Image::alloc(300, 300);
/// // draw a enneagon
/// // at x150, y150 │ unrotated white
/// // with a radius of ─┼──╮ │ │
/// i.poly((150., 150.), 9, 100.0, 0.0, [255]);
/// # assert_eq!(i.buffer(), include_bytes!("../../tdata/enneagon.imgbuf"));
/// ```
pub fn poly(
&mut self,
pos: impl Into<Vec2>,
sides: usize,
radius: f32,
rotation: f32,
c: [u8; CHANNELS],
) {
let pos = pos.into();
let trans = |a: f32| Vec2::from_angle(a) * radius;
let r = |v: Vec2| (v.x.round() as i32, v.y.round() as i32);
match sides {
3 => {
let space = TAU / 3.0;
self.tri::<f32>(
trans(space + rotation) + pos,
trans(rotation) + pos,
trans(madd(space, 2.0, rotation)) + pos,
c,
);
}
_ => {
let space = TAU / sides as f32;
for i in (0..sides - 1).step_by(2).map(|i| i as f32) {
self.quad(
r(pos),
r(trans(madd(space, i, rotation)) + pos),
r(trans(madd(space, i + 1., rotation)) + pos),
r(trans(madd(space, i + 2., rotation)) + pos),
c,
);
}
if sides % 2 != 0 && sides > 4 {
let i = (sides - 1) as f32;
// the missing piece
self.tri::<f32>(
pos,
trans(madd(space, i, rotation)) + pos,
trans(madd(space, i + 1., rotation)) + pos,
c,
);
}
}
}
}
/// Draw a bordered polygon.
/// Prefer [`Image::border_circle`] to draw circles.
/// See also [`Image::poly`].
/// ```
/// let mut i = fimg::Image::alloc(100, 100);
/// i.border_poly((50., 50.), 5, 25., 0., 7., [255]);
/// # assert_eq!(i.buffer(), include_bytes!("../../tdata/border_pentagon.imgbuf"));
/// ```
pub fn border_poly(
&mut self,
pos: impl Into<Vec2>,
sides: usize,
radius: f32,
rotation: f32,
stroke: f32,
c: [u8; CHANNELS],
) {
let pos = pos.into();
let space = TAU / sides as f32;
let step = stroke / 2.0 / (space / 2.0).cos();
let r1 = radius - step;
let r2 = radius + step;
let r = |a: f32, b: f32| (a.round() as i32, b.round() as i32);
for i in 0..sides {
let a = space.madd(i as f32, rotation);
self.quad(
r(r1.madd(a.cos(), pos.x), r1.madd(a.sin(), pos.y)),
r(
r1.madd((a + space).cos(), pos.x),
r1.madd((a + space).sin(), pos.y),
),
r(
r2.madd((a + space).cos(), pos.x),
r2.madd((a + space).sin(), pos.y),
),
r(r2.madd(a.cos(), pos.x), r2.madd(a.sin(), pos.y)),
c,
);
}
}
}