1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
#[derive(Debug)]
/// An object to store statistics for base clipping on
/// an alignment
pub struct ClipStat {
/// number of bases from the 5' end being clipped
left: i64,
/// number of bases from the 3' end being clipped
right: i64,
/// total number of clipped bases on the alignment,
/// this should be the sum of left and right
total_clipped: i64,
}
/// Helper function to find the maximum value in a list
///
/// # Arguments
/// * `clip_vec`: a list of integers
///
/// # Return
/// * the maximum value from the list, 0 if it's None
///
/// # Examples
/// ```
/// use filter_clipped::clipping::vec_to_max;
/// let list_of_numbers = vec![0,1,2,3];
/// assert_eq!(3, vec_to_max(list_of_numbers));
/// ```
pub fn vec_to_max(clip_vec: Vec<i64>) -> i64 {
let max_clip = clip_vec.iter().max();
match max_clip {
Some(n) => *n,
_ => 0,
}
}
/// Helper function to calculate a fraction given two numbers
///
/// # Arguments
/// * `n_base`: the numerator in the fraction
/// * `seq_len`: the denominator in the fraction
///
/// # Return
/// * fraction: n_base / seq_len
///
/// # Examples
/// ```
/// use filter_clipped::clipping::nbase_to_frac;
/// assert_eq!(nbase_to_frac(10, 10.0).unwrap(), 1.0)
/// ```
pub fn nbase_to_frac(n_base: i64, seq_len: f64) -> Result<f64, String> {
if seq_len < 1.0 {
Err(String::from("seq_len must be greater than 0"))
}else{
Ok(n_base as f64 / seq_len)
}
}
impl ClipStat {
/// Creat a new ClipStat object for an alignment
///
/// # Arguments
/// * `leading_clipped`: a list of [number of 5' soft clipped bases, number of 5' hard clipped bases]
/// * `trailing_clipped`: a list of [number of 3' soft clipped bases, number of 3' hard clipped bases]
///
/// # Return:
/// A ClipStat object
///
/// # Example
/// ```
/// use filter_clipped::clipping::ClipStat;
/// let clip_stat = ClipStat::new(
/// vec![0,1],
/// vec![0,2],
/// );
/// assert_eq!(clip_stat.left(), 1);
/// assert_eq!(clip_stat.right(), 2);
/// assert_eq!(clip_stat.total_clipped(), 3);
/// ```
pub fn new(leading_clipped: Vec<i64>, tailing_clipped: Vec<i64>) -> Self {
let all_clipped = leading_clipped.iter().sum::<i64>() + tailing_clipped.iter().sum::<i64>();
Self {
left: vec_to_max(leading_clipped),
right: vec_to_max(tailing_clipped),
total_clipped: all_clipped,
}
}
/// Return the fraction of 3' clipped base relative to the sequence length
///
/// # Argument
/// * `seq_len`: sequence length of the alignment
///
/// # Return:
/// * `f64` fraction of 3' clipped base
///
/// # Example
/// ```
/// use filter_clipped::clipping::ClipStat;
/// let clip_stat = ClipStat::new(
/// vec![0,1],
/// vec![0,2],
/// );
/// assert_eq!(clip_stat.right_fraction(10.0).unwrap(), 0.2);
/// ```
pub fn right_fraction(&self, seq_len: f64) -> Result<f64, String> {
nbase_to_frac(self.right, seq_len)
}
/// Return the fraction of 5' clipped base relative to the sequence length
///
/// # Argument
/// * `seq_len`: sequence length of the alignment
///
/// # Return:
/// * `f64` fraction of 5' clipped base
///
/// # Example
/// ```
/// use filter_clipped::clipping::ClipStat;
/// let clip_stat = ClipStat::new(
/// vec![0,1],
/// vec![0,2],
/// );
/// assert_eq!(clip_stat.left_fraction(10.0).unwrap(), 0.1);
/// ```
pub fn left_fraction(&self, seq_len: f64) -> Result<f64, String> {
nbase_to_frac(self.left, seq_len)
}
/// Return the fraction of total clipped base relative to the sequence length
///
/// # Argument
/// * `seq_len`: sequence length of the alignment
///
/// # Return:
/// * `f64` fraction of 5' clipped base
///
/// # Example
/// ```
/// use filter_clipped::clipping::ClipStat;
/// let clip_stat = ClipStat::new(
/// vec![0,1],
/// vec![0,2],
/// );
/// assert_eq!(clip_stat.total_fraction(10.0).unwrap(), 0.3);
/// ```
pub fn total_fraction(&self, seq_len: f64) -> Result<f64, String> {
nbase_to_frac(self.total_clipped, seq_len)
}
/// Expose left
/// # Example
/// ```
/// use filter_clipped::clipping::ClipStat;
/// let clip_stat = ClipStat::new(
/// vec![0,1],
/// vec![0,2],
/// );
/// assert_eq!(clip_stat.left(), 1);
/// ```
pub fn left(&self) -> i64 {
self.left
}
/// Expose right
/// # Example
/// ```
/// use filter_clipped::clipping::ClipStat;
/// let clip_stat = ClipStat::new(
/// vec![0,1],
/// vec![0,2],
/// );
/// assert_eq!(clip_stat.right(), 2);
/// ```
pub fn right(&self) -> i64 {
self.right
}
/// Expose total_clipped
/// # Example
/// ```
/// use filter_clipped::clipping::ClipStat;
/// let clip_stat = ClipStat::new(
/// vec![0,1],
/// vec![0,2],
/// );
/// assert_eq!(clip_stat.total_clipped(), 3);
/// ```
pub fn total_clipped(&self) -> i64 {
self.total_clipped
}
}
#[cfg(test)]
mod tests {
use super::*;
use rstest::rstest;
#[rstest]
#[case(vec![2,0], vec![0,2], 0.2, 0.2, 0.4)]
#[case(vec![1,0], vec![0,2], 0.2, 0.1, 0.3)]
fn test_clip_stat(
#[case] leading_clipped: Vec<i64>,
#[case] trailing_cliped: Vec<i64>,
#[case] expected_r_frac: f64,
#[case] expected_l_frac: f64,
#[case] expected_total_frac: f64,
) {
let seq_len = 10.0;
let clip_stat = ClipStat::new(leading_clipped, trailing_cliped);
assert_eq!(expected_r_frac, clip_stat.right_fraction(seq_len).unwrap());
assert_eq!(expected_l_frac, clip_stat.left_fraction(seq_len).unwrap());
assert_eq!(expected_total_frac, clip_stat.total_fraction(seq_len).unwrap());
}
#[rstest]
#[case(vec![2,3,0], 3)]
#[case(vec![1,2,3], 3)]
#[case(vec![1,0], 1)]
fn test_vec_to_max(#[case] input_vec: Vec<i64>, #[case] expected_out: i64) {
assert_eq!(expected_out, vec_to_max(input_vec));
}
#[rstest]
#[case(10, 20.0, 0.5)]
#[case(10, 40.0, 0.25)]
#[case(2, 40.0, 0.05)]
fn test_nbase_to_frac(#[case] n_base: i64, #[case] seq_len: f64, #[case] expected_out: f64) {
assert_eq!(nbase_to_frac(n_base, seq_len).unwrap(), expected_out);
}
}