fibonacci_like/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
#![warn(missing_docs)]
#![cfg_attr(not(feature = "std"), no_std)]
#![doc = include_str!("../README.md")]

/// An error for when the given input could not be found in the sequence
#[derive(Debug)]
pub enum FindError {
    /// The input was not found in the sequence
    NotFound(Number),
}

impl core::fmt::Display for FindError {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        match self {
            FindError::NotFound(number) => {
                write!(f, "The number `{}` was not found in the sequence", number)
            }
        }
    }
}

#[cfg(feature = "std")]
impl std::error::Error for FindError {}

type FindResult<T> = Result<T, FindError>;

/// The into_number trait
///
/// See [`Number`] for more information.
pub trait IntoNumber {
    /// Converts the given value into a [`Number`] type
    fn into_number(self) -> Number;
}

/// The number return type
///
/// Will be either [`num_bigint::BigInt`] or [`i128`] based on whether the `big-int` feature is enabled or not
#[cfg(feature = "big-int")]
pub type Number = num_bigint::BigInt;

/// The number return type
///
/// Will be either [`num_bigint::BigInt`] or [`i128`] based on whether the `big-int` feature is enabled or not
#[cfg(not(feature = "big-int"))]
pub type Number = i128;

impl IntoNumber for i128 {
    fn into_number(self) -> Number {
        cfg_if::cfg_if! {
            if #[cfg(feature = "big-int")] {
                use num_bigint::ToBigInt;

                self.to_bigint().unwrap()
            } else {
                self
            }
        }
    }
}

fn update_array(numbers: &mut [Number; 2]) {
    let old_x = &numbers[0];
    let old_y = &numbers[1];
    let new_y = old_x + old_y;
    // Removes the need to clone if we add 0
    numbers[0] = old_y + 0;
    numbers[1] = new_y;
}

/// A sequence, represented by the two starting values, which are later used to compute further values
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Sequence(pub Number, pub Number);

impl Sequence {
    /// Creates a new sequence with the given starting values
    ///
    /// # Examples
    ///
    /// ```
    /// # use fibonacci_like::Sequence;
    /// Sequence::new([1,1]);
    /// ```
    pub fn new(sequence: impl Into<Self>) -> Self {
        sequence.into()
    }

    /// Returns the fibonacci sequence, represented as a [`Sequence`] struct
    ///
    /// # Examples
    ///
    /// ```
    /// # use fibonacci_like::Sequence;
    /// let sequence = Sequence::new([1, 1]);
    /// let fib_sequence = Sequence::fibonacci();
    ///
    /// assert_eq!(sequence, fib_sequence);
    /// ```
    pub fn fibonacci() -> Self {
        Self::new([1, 1])
    }

    /// Calculate the nth term of the sequence
    ///
    /// # Examples
    ///
    /// ```
    /// # use fibonacci_like::{Sequence, IntoNumber};
    /// let sequence = Sequence::fibonacci();
    /// let nth_term = sequence.calculate(3);
    ///
    /// assert_eq!(nth_term, 2_i128.into_number());
    /// ```
    pub fn calculate(self, n: usize) -> Number {
        let mut numbers = [self.0, self.1];

        for _ in 2..n {
            update_array(&mut numbers);
        }

        cfg_if::cfg_if! {
            if #[cfg(feature = "big-int")] {
                use num_bigint::ToBigInt;
                numbers[1].to_bigint().unwrap()
            } else {
                numbers[1]
            }
        }
    }

    /// Find the given number's position in the sequence
    ///
    /// # Examples
    ///
    /// ```
    /// # use fibonacci_like::{Sequence, IntoNumber};
    /// let fifteenth = 610.into_number();
    ///
    /// let fib = Sequence::fibonacci();
    ///
    /// assert_eq!(fib.find(fifteenth).unwrap(), 15);
    /// ```
    pub fn find(self, number: Number) -> FindResult<usize> {
        let mut numbers = [self.0, self.1];

        if number == numbers[0] {
            return Ok(1);
        } else if number == numbers[1] {
            return Ok(2);
        }

        let mut n = 2;
        loop {
            update_array(&mut numbers);
            n += 1;

            if numbers[1] > number {
                break Err(FindError::NotFound(number));
            }

            if numbers[1] == number {
                break Ok(n);
            }
        }
    }
}

impl From<[i128; 2]> for Sequence {
    fn from(array: [i128; 2]) -> Sequence {
        Sequence(array[0].into_number(), array[1].into_number())
    }
}

#[cfg(test)]
mod tests {
    cfg_if::cfg_if! {
        if #[cfg(feature = "big-int")] {
            use num_bigint::BigInt;
            use std::str::FromStr;
        }
    }

    use super::*;

    // This test does not work without big-int as the literal is too large to fit in i128
    #[cfg(feature = "big-int")]
    #[test]
    fn test_get_500th() {
        let nth500 = BigInt::from_str("139423224561697880139724382870407283950070256587697307264108962948325571622863290691557658876222521294125").unwrap();

        let fib = Sequence::fibonacci();

        assert_eq!(fib.calculate(500), nth500);
    }

    #[test]
    fn test_get_first() {
        let first = 1.into_number();

        let fib = Sequence::fibonacci();

        assert_eq!(fib.calculate(1), first);
    }

    #[test]
    fn test_get_third() {
        let third = 2.into_number();

        let fib = Sequence::fibonacci();

        assert_eq!(fib.calculate(3), third);
    }

    #[test]
    fn test_find_first() {
        let first = 1.into_number();

        let fib = Sequence::fibonacci();

        assert_eq!(fib.find(first).unwrap(), 1);
    }

    #[test]
    fn test_find_third() {
        let third = 2.into_number();

        let fib = Sequence::fibonacci();

        assert_eq!(fib.find(third).unwrap(), 3);
    }

    #[test]
    fn test_find_fifteenth() {
        let fifteenth = 610.into_number();

        let fib = Sequence::fibonacci();

        assert_eq!(fib.find(fifteenth).unwrap(), 15);
    }
}