ffi_support/handle_map.rs
1/* Copyright 2018-2019 Mozilla Foundation
2 *
3 * Licensed under the Apache License (Version 2.0), or the MIT license,
4 * (the "Licenses") at your option. You may not use this file except in
5 * compliance with one of the Licenses. You may obtain copies of the
6 * Licenses at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 * http://opensource.org/licenses/MIT
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the Licenses is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the Licenses for the specific language governing permissions and
15 * limitations under the Licenses. */
16
17//! This module provides a [`Handle`] type, which you can think of something
18//! like a dynamically checked, type erased reference/pointer type. Depending on
19//! the usage pattern a handle can behave as either a borrowed reference, or an
20//! owned pointer.
21//!
22//! They can be losslessly converted [to](Handle::into_u64) and
23//! [from](Handle::from_u64) a 64 bit integer, for ease of passing over the FFI
24//! (and they implement [`IntoFfi`] using these primitives for this purpose).
25//!
26//! The benefit is primarially that they can detect common misuse patterns that
27//! would otherwise be silent bugs, such as use-after-free, double-free, passing
28//! a wrongly-typed pointer to a function, etc.
29//!
30//! Handles are provided when inserting an item into either a [`HandleMap`] or a
31//! [`ConcurrentHandleMap`].
32//!
33//! # Comparison to types from other crates
34//!
35//! [`HandleMap`] is similar to types offered by other crates, such as
36//! `slotmap`, or `slab`. However, it has a number of key differences which make
37//! it better for our purposes as compared to the types in those crates:
38//!
39//! 1. Unlike `slab` (but like `slotmap`), we implement versioning, detecting
40//! ABA problems, which allows us to detect use after free.
41//! 2. Unlike `slotmap`, we don't have the `T: Copy` restriction.
42//! 3. Unlike either, we can detect when you use a Key in a map that did not
43//! allocate the key. This is true even when the map is from a `.so` file
44//! compiled separately.
45//! 3. Our implementation of doesn't use any `unsafe` (at the time of this
46//! writing).
47//!
48//! However, it comes with the following drawbacks:
49//!
50//! 1. `slotmap` holds its version information in a `u32`, and so it takes
51//! 2<sup>31</sup> colliding insertions and deletions before it could
52//! potentially fail to detect an ABA issue, wheras we use a `u16`, and are
53//! limited to 2<sup>15</sup>.
54//! 2. Similarly, we can only hold 2<sup>16</sup> items at once, unlike
55//! `slotmap`'s 2<sup>32</sup>. (Considering these items are typically things
56//! like database handles, this is probably plenty).
57//! 3. Our implementation is slower, and uses slightly more memory than
58//! `slotmap` (which is in part due to the lack of `unsafe` mentioned above)
59//!
60//! The first two issues seem exceptionally unlikely, even for extremely
61//! long-lived `HandleMap`, and we're still memory safe even if they occur (we
62//! just might fail to notice a bug). The third issue also seems unimportant for
63//! our use case.
64
65use crate::error::{ErrorCode, ExternError};
66use crate::into_ffi::IntoFfi;
67use std::error::Error as StdError;
68use std::fmt;
69use std::ops;
70use std::sync::atomic::{AtomicUsize, Ordering};
71use std::sync::{Mutex, RwLock};
72
73/// `HandleMap` is a collection type which can hold any type of value, and
74/// offers a stable handle which can be used to retrieve it on insertion. These
75/// handles offer methods for converting [to](Handle::into_u64) and
76/// [from](Handle::from_u64) 64 bit integers, meaning they're very easy to pass
77/// over the FFI (they also implement [`IntoFfi`] for the same purpose).
78///
79/// See the [module level docs](index.html) for more information.
80///
81/// Note: In FFI code, most usage of `HandleMap` will be done through the
82/// [`ConcurrentHandleMap`] type, which is a thin wrapper around a
83/// `RwLock<HandleMap<Mutex<T>>>`.
84#[derive(Debug, Clone)]
85pub struct HandleMap<T> {
86 // The value of `map_id` in each `Handle`.
87 id: u16,
88
89 // Index to the start of the free list. Always points to a free item --
90 // we never allow our free list to become empty.
91 first_free: u16,
92
93 // The number of entries with `data.is_some()`. This is never equal to
94 // `entries.len()`, we always grow before that point to ensure we always have
95 // a valid `first_free` index to add entries onto. This is our `len`.
96 num_entries: usize,
97
98 // The actual data. Note: entries.len() is our 'capacity'.
99 entries: Vec<Entry<T>>,
100}
101
102#[derive(Debug, Clone)]
103struct Entry<T> {
104 // initially 1, incremented on insertion and removal. Thus,
105 // if version is even, state should always be EntryState::Active.
106 version: u16,
107 state: EntryState<T>,
108}
109
110#[derive(Debug, Clone)]
111enum EntryState<T> {
112 // Not part of the free list
113 Active(T),
114 // The u16 is the next index in the free list.
115 InFreeList(u16),
116 // Part of the free list, but the sentinel.
117 EndOfFreeList,
118}
119
120impl<T> EntryState<T> {
121 #[cfg(any(debug_assertions, test))]
122 fn is_end_of_list(&self) -> bool {
123 match self {
124 EntryState::EndOfFreeList => true,
125 _ => false,
126 }
127 }
128
129 #[inline]
130 fn is_occupied(&self) -> bool {
131 self.get_item().is_some()
132 }
133
134 #[inline]
135 fn get_item(&self) -> Option<&T> {
136 match self {
137 EntryState::Active(v) => Some(v),
138 _ => None,
139 }
140 }
141
142 #[inline]
143 fn get_item_mut(&mut self) -> Option<&mut T> {
144 match self {
145 EntryState::Active(v) => Some(v),
146 _ => None,
147 }
148 }
149}
150
151// Small helper to check our casts.
152#[inline]
153fn to_u16(v: usize) -> u16 {
154 use std::u16::MAX as U16_MAX;
155 // Shouldn't ever happen.
156 assert!(v <= (U16_MAX as usize), "Bug: Doesn't fit in u16: {}", v);
157 v as u16
158}
159
160/// The maximum capacity of a [`HandleMap`]. Attempting to instantiate one with
161/// a larger capacity will cause a panic.
162///
163/// Note: This could go as high as `(1 << 16) - 2`, but doing is seems more
164/// error prone. For the sake of paranoia, we limit it to this size, which is
165/// already quite a bit larger than it seems like we're likely to ever need.
166pub const MAX_CAPACITY: usize = (1 << 15) - 1;
167
168// Never having to worry about capacity == 0 simplifies the code at the cost of
169// worse memory usage. It doesn't seem like there's any reason to make this
170// public.
171const MIN_CAPACITY: usize = 4;
172
173/// An error representing the ways a `Handle` may be invalid.
174#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)]
175pub enum HandleError {
176 /// Identical to invalid handle, but has a slightly more helpful
177 /// message for the most common case 0.
178 NullHandle,
179
180 /// Returned from [`Handle::from_u64`] if [`Handle::is_valid`] fails.
181 InvalidHandle,
182
183 /// Returned from get/get_mut/delete if the handle is stale (this indicates
184 /// something equivalent to a use-after-free / double-free, etc).
185 StaleVersion,
186
187 /// Returned if the handle index references an index past the end of the
188 /// HandleMap.
189 IndexPastEnd,
190
191 /// The handle has a map_id for a different map than the one it was
192 /// attempted to be used with.
193 WrongMap,
194}
195
196impl StdError for HandleError {}
197
198impl fmt::Display for HandleError {
199 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
200 use HandleError::*;
201 match self {
202 NullHandle => {
203 f.write_str("Tried to use a null handle (this object has probably been closed)")
204 }
205 InvalidHandle => f.write_str("u64 could not encode a valid Handle"),
206 StaleVersion => f.write_str("Handle has stale version number"),
207 IndexPastEnd => f.write_str("Handle references a index past the end of this HandleMap"),
208 WrongMap => f.write_str("Handle is from a different map"),
209 }
210 }
211}
212
213impl From<HandleError> for ExternError {
214 fn from(e: HandleError) -> Self {
215 ExternError::new_error(ErrorCode::INVALID_HANDLE, e.to_string())
216 }
217}
218
219impl<T> HandleMap<T> {
220 /// Create a new `HandleMap` with the default capacity.
221 pub fn new() -> Self {
222 Self::new_with_capacity(MIN_CAPACITY)
223 }
224
225 /// Allocate a new `HandleMap`. Note that the actual capacity may be larger
226 /// than the requested value.
227 ///
228 /// Panics if `request` is greater than [`handle_map::MAX_CAPACITY`](MAX_CAPACITY)
229 pub fn new_with_capacity(request: usize) -> Self {
230 assert!(
231 request <= MAX_CAPACITY,
232 "HandleMap capacity is limited to {} (request was {})",
233 MAX_CAPACITY,
234 request
235 );
236
237 let capacity = request.max(MIN_CAPACITY);
238 let id = next_handle_map_id();
239 let mut entries = Vec::with_capacity(capacity);
240
241 // Initialize each entry with version 1, and as a member of the free list
242 for i in 0..(capacity - 1) {
243 entries.push(Entry {
244 version: 1,
245 state: EntryState::InFreeList(to_u16(i + 1)),
246 });
247 }
248
249 // And the final entry is at the end of the free list
250 // (but still has version 1).
251 entries.push(Entry {
252 version: 1,
253 state: EntryState::EndOfFreeList,
254 });
255 Self {
256 id,
257 first_free: 0,
258 num_entries: 0,
259 entries,
260 }
261 }
262
263 /// Get the number of entries in the `HandleMap`.
264 #[inline]
265 pub fn len(&self) -> usize {
266 self.num_entries
267 }
268
269 /// Returns true if the HandleMap is empty.
270 #[inline]
271 pub fn is_empty(&self) -> bool {
272 self.len() == 0
273 }
274
275 /// Returns the number of slots allocated in the handle map.
276 #[inline]
277 pub fn capacity(&self) -> usize {
278 // It's not a bug that this isn't entries.capacity() -- We're returning
279 // how many slots exist, not something about the backing memory allocation
280 self.entries.len()
281 }
282
283 fn ensure_capacity(&mut self, cap_at_least: usize) {
284 assert_ne!(self.len(), self.capacity(), "Bug: should have grown by now");
285 assert!(cap_at_least <= MAX_CAPACITY, "HandleMap overfilled");
286 if self.capacity() > cap_at_least {
287 return;
288 }
289
290 let mut next_cap = self.capacity();
291 while next_cap <= cap_at_least {
292 next_cap *= 2;
293 }
294 next_cap = next_cap.min(MAX_CAPACITY);
295
296 let need_extra = next_cap.saturating_sub(self.entries.capacity());
297 self.entries.reserve(need_extra);
298
299 assert!(
300 !self.entries[self.first_free as usize].state.is_occupied(),
301 "Bug: HandleMap.first_free points at occupied index"
302 );
303
304 // Insert new entries at the front of our list.
305 while self.entries.len() < next_cap - 1 {
306 // This is a little wasteful but whatever. Add each new entry to the
307 // front of the free list one at a time.
308 self.entries.push(Entry {
309 version: 1,
310 state: EntryState::InFreeList(self.first_free),
311 });
312 self.first_free = to_u16(self.entries.len() - 1);
313 }
314
315 self.debug_check_valid();
316 }
317
318 #[inline]
319 fn debug_check_valid(&self) {
320 // Run the expensive validity check in tests and in debug builds.
321 #[cfg(any(debug_assertions, test))]
322 {
323 self.assert_valid();
324 }
325 }
326
327 #[cfg(any(debug_assertions, test))]
328 fn assert_valid(&self) {
329 assert_ne!(self.len(), self.capacity());
330 assert!(self.capacity() <= MAX_CAPACITY, "Entries too large");
331 // Validate that our free list is correct.
332
333 let number_of_ends = self
334 .entries
335 .iter()
336 .filter(|e| e.state.is_end_of_list())
337 .count();
338 assert_eq!(
339 number_of_ends, 1,
340 "More than one entry think's it's the end of the list, or no entries do"
341 );
342
343 // Check that the free list hits every unoccupied item.
344 // The tuple is: `(should_be_in_free_list, is_in_free_list)`.
345 let mut free_indices = vec![(false, false); self.capacity()];
346 for (i, e) in self.entries.iter().enumerate() {
347 if !e.state.is_occupied() {
348 free_indices[i].0 = true;
349 }
350 }
351
352 let mut next = self.first_free;
353 loop {
354 let ni = next as usize;
355
356 assert!(
357 ni <= free_indices.len(),
358 "Free list contains out of bounds index!"
359 );
360
361 assert!(
362 free_indices[ni].0,
363 "Free list has an index that shouldn't be free! {}",
364 ni
365 );
366
367 assert!(
368 !free_indices[ni].1,
369 "Free list hit an index ({}) more than once! Cycle detected!",
370 ni
371 );
372
373 free_indices[ni].1 = true;
374
375 match &self.entries[ni].state {
376 EntryState::InFreeList(next_index) => next = *next_index,
377 EntryState::EndOfFreeList => break,
378 // Hitting `Active` here is probably not possible because of the checks above, but who knows.
379 EntryState::Active(..) => unreachable!("Bug: Active item in free list at {}", next),
380 }
381 }
382 let mut occupied_count = 0;
383 for (i, &(should_be_free, is_free)) in free_indices.iter().enumerate() {
384 assert_eq!(
385 should_be_free, is_free,
386 "Free list missed item, or contains an item it shouldn't: {}",
387 i
388 );
389 if !should_be_free {
390 occupied_count += 1;
391 }
392 }
393 assert_eq!(
394 self.num_entries, occupied_count,
395 "num_entries doesn't reflect the actual number of entries"
396 );
397 }
398
399 /// Insert an item into the map, and return a handle to it.
400 pub fn insert(&mut self, v: T) -> Handle {
401 let need_cap = self.len() + 1;
402 self.ensure_capacity(need_cap);
403 let index = self.first_free;
404 let result = {
405 // Scoped mutable borrow of entry.
406 let entry = &mut self.entries[index as usize];
407 let new_first_free = match entry.state {
408 EntryState::InFreeList(i) => i,
409 _ => panic!("Bug: next_index pointed at non-free list entry (or end of list)"),
410 };
411 entry.version += 1;
412 if entry.version == 0 {
413 entry.version += 2;
414 }
415 entry.state = EntryState::Active(v);
416 self.first_free = new_first_free;
417 self.num_entries += 1;
418
419 Handle {
420 map_id: self.id,
421 version: entry.version,
422 index,
423 }
424 };
425 self.debug_check_valid();
426 result
427 }
428
429 // Helper to contain the handle validation boilerplate. Returns `h.index as usize`.
430 fn check_handle(&self, h: Handle) -> Result<usize, HandleError> {
431 if h.map_id != self.id {
432 log::info!(
433 "HandleMap access with handle having wrong map id: {:?} (our map id is {})",
434 h,
435 self.id
436 );
437 return Err(HandleError::WrongMap);
438 }
439 let index = h.index as usize;
440 if index >= self.entries.len() {
441 log::info!("HandleMap accessed with handle past end of map: {:?}", h);
442 return Err(HandleError::IndexPastEnd);
443 }
444 if self.entries[index].version != h.version {
445 log::info!(
446 "HandleMap accessed with handle with wrong version {:?} (entry version is {})",
447 h,
448 self.entries[index].version
449 );
450 return Err(HandleError::StaleVersion);
451 }
452 // At this point, we know the handle version matches the entry version,
453 // but if someone created a specially invalid handle, they could have
454 // its version match the version they expect an unoccupied index to
455 // have.
456 //
457 // We don't use any unsafe, so the worse thing that can happen here is
458 // that we get confused and panic, but still that's not great, so we
459 // check for this explicitly.
460 //
461 // Note that `active` versions are always even, as they start at 1, and
462 // are incremented on both insertion and deletion.
463 //
464 // Anyway, this is just for sanity checking, we already check this in
465 // practice when we convert `u64`s into `Handle`s, which is the only
466 // way we ever use these in the real world.
467 if (h.version % 2) != 0 {
468 log::info!(
469 "HandleMap given handle with matching but illegal version: {:?}",
470 h,
471 );
472 return Err(HandleError::StaleVersion);
473 }
474 Ok(index)
475 }
476
477 /// Delete an item from the HandleMap.
478 pub fn delete(&mut self, h: Handle) -> Result<(), HandleError> {
479 self.remove(h).map(drop)
480 }
481
482 /// Remove an item from the HandleMap, returning the old value.
483 pub fn remove(&mut self, h: Handle) -> Result<T, HandleError> {
484 let index = self.check_handle(h)?;
485 let prev = {
486 // Scoped mutable borrow of entry.
487 let entry = &mut self.entries[index];
488 entry.version += 1;
489 let index = h.index;
490 let last_state =
491 std::mem::replace(&mut entry.state, EntryState::InFreeList(self.first_free));
492 self.num_entries -= 1;
493 self.first_free = index;
494
495 if let EntryState::Active(value) = last_state {
496 value
497 } else {
498 // This indicates either a bug in HandleMap or memory
499 // corruption. Abandon all hope.
500 unreachable!(
501 "Handle {:?} passed validation but references unoccupied entry",
502 h
503 );
504 }
505 };
506 self.debug_check_valid();
507 Ok(prev)
508 }
509
510 /// Get a reference to the item referenced by the handle, or return a
511 /// [`HandleError`] describing the problem.
512 pub fn get(&self, h: Handle) -> Result<&T, HandleError> {
513 let idx = self.check_handle(h)?;
514 let entry = &self.entries[idx];
515 // This should be caught by check_handle above, but we avoid panicking
516 // because we'd rather not poison any locks we don't have to poison
517 let item = entry
518 .state
519 .get_item()
520 .ok_or_else(|| HandleError::InvalidHandle)?;
521 Ok(item)
522 }
523
524 /// Get a mut reference to the item referenced by the handle, or return a
525 /// [`HandleError`] describing the problem.
526 pub fn get_mut(&mut self, h: Handle) -> Result<&mut T, HandleError> {
527 let idx = self.check_handle(h)?;
528 let entry = &mut self.entries[idx];
529 // This should be caught by check_handle above, but we avoid panicking
530 // because we'd rather not poison any locks we don't have to poison
531 let item = entry
532 .state
533 .get_item_mut()
534 .ok_or_else(|| HandleError::InvalidHandle)?;
535 Ok(item)
536 }
537}
538
539impl<T> Default for HandleMap<T> {
540 #[inline]
541 fn default() -> Self {
542 HandleMap::new()
543 }
544}
545
546impl<T> ops::Index<Handle> for HandleMap<T> {
547 type Output = T;
548 #[inline]
549 fn index(&self, h: Handle) -> &T {
550 self.get(h)
551 .expect("Indexed into HandleMap with invalid handle!")
552 }
553}
554
555// We don't implement IndexMut intentionally (implementing ops::Index is
556// dubious enough)
557
558/// A Handle we allow to be returned over the FFI by implementing [`IntoFfi`].
559/// This type is intentionally not `#[repr(C)]`, and getting the data out of the
560/// FFI is done using `Handle::from_u64`, or it's implemetation of `From<u64>`.
561///
562/// It consists of, at a minimum:
563///
564/// - A "map id" (used to ensure you're using it with the correct map)
565/// - a "version" (incremented when the value in the index changes, used to
566/// detect multiple frees, use after free, and ABA and ABA)
567/// - and a field indicating which index it goes into.
568///
569/// In practice, it may also contain extra information to help detect other
570/// errors (currently it stores a "magic value" used to detect invalid
571/// [`Handle`]s).
572///
573/// These fields may change but the following guarantees are made about the
574/// internal representation:
575///
576/// - This will always be representable in 64 bits.
577/// - The bits, when interpreted as a signed 64 bit integer, will be positive
578/// (that is to say, it will *actually* be representable in 63 bits, since
579/// this makes the most significant bit unavailable for the purposes of
580/// encoding). This guarantee makes things slightly less dubious when passing
581/// things to Java, gives us some extra validation ability, etc.
582#[derive(Copy, Clone, Debug, PartialEq)]
583pub struct Handle {
584 map_id: u16,
585 version: u16,
586 index: u16,
587}
588
589// We stuff this into the top 16 bits of the handle when u16 encoded to detect
590// various sorts of weirdness. It's the letters 'A' and 'S' as ASCII, but the
591// only important thing about it is that the most significant bit be unset.
592const HANDLE_MAGIC: u16 = 0x4153_u16;
593
594impl Handle {
595 /// Convert a `Handle` to a `u64`. You can also use `Into::into` directly.
596 /// Most uses of this will be automatic due to our [`IntoFfi`] implementation.
597 #[inline]
598 pub fn into_u64(self) -> u64 {
599 let map_id = u64::from(self.map_id);
600 let version = u64::from(self.version);
601 let index = u64::from(self.index);
602 // SOMEDAY: we could also use this as a sort of CRC if we were really paranoid.
603 // e.g. `magic = combine_to_u16(map_id, version, index)`.
604 let magic = u64::from(HANDLE_MAGIC);
605 (magic << 48) | (map_id << 32) | (index << 16) | version
606 }
607
608 /// Convert a `u64` to a `Handle`. Inverse of `into_u64`. We also implement
609 /// `From::from` (which will panic instead of returning Err).
610 ///
611 /// Returns [`HandleError::InvalidHandle`](HandleError) if the bits cannot
612 /// possibly represent a valid handle.
613 pub fn from_u64(v: u64) -> Result<Self, HandleError> {
614 if !Handle::is_valid(v) {
615 log::warn!("Illegal handle! {:x}", v);
616 if v == 0 {
617 Err(HandleError::NullHandle)
618 } else {
619 Err(HandleError::InvalidHandle)
620 }
621 } else {
622 let map_id = (v >> 32) as u16;
623 let index = (v >> 16) as u16;
624 let version = v as u16;
625 Ok(Self {
626 map_id,
627 version,
628 index,
629 })
630 }
631 }
632
633 /// Returns whether or not `v` makes a bit pattern that could represent an
634 /// encoded [`Handle`].
635 #[inline]
636 pub fn is_valid(v: u64) -> bool {
637 (v >> 48) == u64::from(HANDLE_MAGIC) &&
638 // The "bottom" field is the version. We increment it both when
639 // inserting and removing, and they're all initially 1. So, all valid
640 // handles that we returned should have an even version.
641 ((v & 1) == 0)
642 }
643}
644
645impl From<u64> for Handle {
646 fn from(u: u64) -> Self {
647 Handle::from_u64(u).expect("Illegal handle!")
648 }
649}
650
651impl From<Handle> for u64 {
652 #[inline]
653 fn from(h: Handle) -> u64 {
654 h.into_u64()
655 }
656}
657
658unsafe impl IntoFfi for Handle {
659 type Value = u64;
660 // Note: intentionally does not encode a valid handle for any map.
661 #[inline]
662 fn ffi_default() -> u64 {
663 0u64
664 }
665 #[inline]
666 fn into_ffi_value(self) -> u64 {
667 self.into_u64()
668 }
669}
670
671/// `ConcurrentHandleMap` is a relatively thin wrapper around
672/// `RwLock<HandleMap<Mutex<T>>>`. Due to the nested locking, it's not possible
673/// to implement the same API as [`HandleMap`], however it does implement an API
674/// that offers equivalent functionality, as well as several functions that
675/// greatly simplify FFI usage (see example below).
676///
677/// See the [module level documentation](index.html) for more info.
678///
679/// # Example
680///
681/// ```rust,no_run
682/// # #[macro_use] extern crate lazy_static;
683/// # extern crate ffi_support;
684/// # use ffi_support::*;
685/// # use std::sync::*;
686///
687/// // Somewhere...
688/// struct Thing { value: f64 }
689///
690/// lazy_static! {
691/// static ref ITEMS: ConcurrentHandleMap<Thing> = ConcurrentHandleMap::new();
692/// }
693///
694/// #[no_mangle]
695/// pub extern "C" fn mylib_new_thing(value: f64, err: &mut ExternError) -> u64 {
696/// // Most uses will be `ITEMS.insert_with_result`. Note that this already
697/// // calls `call_with_output` (or `call_with_result` if this were
698/// // `insert_with_result`) for you.
699/// ITEMS.insert_with_output(err, || Thing { value })
700/// }
701///
702/// #[no_mangle]
703/// pub extern "C" fn mylib_thing_value(h: u64, err: &mut ExternError) -> f64 {
704/// // Or `ITEMS.call_with_result` for the fallible functions.
705/// ITEMS.call_with_output(err, h, |thing| thing.value)
706/// }
707///
708/// #[no_mangle]
709/// pub extern "C" fn mylib_thing_set_value(h: u64, new_value: f64, err: &mut ExternError) {
710/// ITEMS.call_with_output_mut(err, h, |thing| {
711/// thing.value = new_value;
712/// })
713/// }
714///
715/// // Note: defines the following function:
716/// // pub extern "C" fn mylib_destroy_thing(h: u64, err: &mut ExternError)
717/// define_handle_map_deleter!(ITEMS, mylib_destroy_thing);
718/// ```
719pub struct ConcurrentHandleMap<T> {
720 /// The underlying map. Public so that more advanced use-cases
721 /// may use it as they please.
722 pub map: RwLock<HandleMap<Mutex<T>>>,
723}
724
725impl<T> ConcurrentHandleMap<T> {
726 /// Construct a new `ConcurrentHandleMap`.
727 pub fn new() -> Self {
728 Self {
729 map: RwLock::new(HandleMap::new()),
730 }
731 }
732
733 /// Get the number of entries in the `ConcurrentHandleMap`.
734 ///
735 /// This takes the map's `read` lock.
736 #[inline]
737 pub fn len(&self) -> usize {
738 let map = self.map.read().unwrap();
739 map.len()
740 }
741
742 /// Returns true if the `ConcurrentHandleMap` is empty.
743 ///
744 /// This takes the map's `read` lock.
745 #[inline]
746 pub fn is_empty(&self) -> bool {
747 self.len() == 0
748 }
749
750 /// Insert an item into the map, returning the newly allocated handle to the
751 /// item.
752 ///
753 /// # Locking
754 ///
755 /// Note that this requires taking the map's write lock, and so it will
756 /// block until all other threads have finished any read/write operations.
757 pub fn insert(&self, v: T) -> Handle {
758 // Fails if the lock is poisoned. Not clear what we should do here... We
759 // could always insert anyway (by matching on LockResult), but that
760 // seems... really quite dubious.
761 let mut map = self.map.write().unwrap();
762 map.insert(Mutex::new(v))
763 }
764
765 /// Remove an item from the map.
766 ///
767 /// # Locking
768 ///
769 /// Note that this requires taking the map's write lock, and so it will
770 /// block until all other threads have finished any read/write operations.
771 pub fn delete(&self, h: Handle) -> Result<(), HandleError> {
772 // We use `remove` and not delete (and use the inner block) to ensure
773 // that if `v`'s destructor panics, we aren't holding the write lock
774 // when it happens, so that the map itself doesn't get poisoned.
775 let v = {
776 let mut map = self.map.write().unwrap();
777 map.remove(h)
778 };
779 v.map(drop)
780 }
781
782 /// Convenient wrapper for `delete` which takes a `u64` that it will
783 /// convert to a handle.
784 ///
785 /// The main benefit (besides convenience) of this over the version
786 /// that takes a [`Handle`] is that it allows handling handle-related errors
787 /// in one place.
788 pub fn delete_u64(&self, h: u64) -> Result<(), HandleError> {
789 self.delete(Handle::from_u64(h)?)
790 }
791
792 /// Remove an item from the map, returning either the item,
793 /// or None if its guard mutex got poisoned at some point.
794 ///
795 /// # Locking
796 ///
797 /// Note that this requires taking the map's write lock, and so it will
798 /// block until all other threads have finished any read/write operations.
799 pub fn remove(&self, h: Handle) -> Result<Option<T>, HandleError> {
800 let mut map = self.map.write().unwrap();
801 let mutex = map.remove(h)?;
802 Ok(mutex.into_inner().ok())
803 }
804
805 /// Convenient wrapper for `remove` which takes a `u64` that it will
806 /// convert to a handle.
807 ///
808 /// The main benefit (besides convenience) of this over the version
809 /// that takes a [`Handle`] is that it allows handling handle-related errors
810 /// in one place.
811 pub fn remove_u64(&self, h: u64) -> Result<Option<T>, HandleError> {
812 self.remove(Handle::from_u64(h)?)
813 }
814
815 /// Call `callback` with a non-mutable reference to the item from the map,
816 /// after acquiring the necessary locks.
817 ///
818 /// # Locking
819 ///
820 /// Note that this requires taking both:
821 ///
822 /// - The map's read lock, and so it will block until all other threads have
823 /// finished any write operations.
824 /// - The mutex on the slot the handle is mapped to.
825 ///
826 /// And so it will block if there are ongoing write operations, or if
827 /// another thread is reading from the same handle.
828 ///
829 /// # Panics
830 ///
831 /// This will panic if a previous `get()` or `get_mut()` call has panicked
832 /// inside it's callback. The solution to this
833 ///
834 /// (It may also panic if the handle map detects internal state corruption,
835 /// however this should not happen except for bugs in the handle map code).
836 pub fn get<F, E, R>(&self, h: Handle, callback: F) -> Result<R, E>
837 where
838 F: FnOnce(&T) -> Result<R, E>,
839 E: From<HandleError>,
840 {
841 self.get_mut(h, |v| callback(v))
842 }
843
844 /// Call `callback` with a mutable reference to the item from the map, after
845 /// acquiring the necessary locks.
846 ///
847 /// # Locking
848 ///
849 /// Note that this requires taking both:
850 ///
851 /// - The map's read lock, and so it will block until all other threads have
852 /// finished any write operations.
853 /// - The mutex on the slot the handle is mapped to.
854 ///
855 /// And so it will block if there are ongoing write operations, or if
856 /// another thread is reading from the same handle.
857 ///
858 /// # Panics
859 ///
860 /// This will panic if a previous `get()` or `get_mut()` call has panicked
861 /// inside it's callback. The only solution to this is to remove and reinsert
862 /// said item.
863 ///
864 /// (It may also panic if the handle map detects internal state corruption,
865 /// however this should not happen except for bugs in the handle map code).
866 pub fn get_mut<F, E, R>(&self, h: Handle, callback: F) -> Result<R, E>
867 where
868 F: FnOnce(&mut T) -> Result<R, E>,
869 E: From<HandleError>,
870 {
871 // XXX figure out how to handle poison...
872 let map = self.map.read().unwrap();
873 let mtx = map.get(h)?;
874 let mut hm = mtx.lock().unwrap();
875 callback(&mut *hm)
876 }
877
878 /// Convenient wrapper for `get` which takes a `u64` that it will convert to
879 /// a handle.
880 ///
881 /// The other benefit (besides convenience) of this over the version
882 /// that takes a [`Handle`] is that it allows handling handle-related errors
883 /// in one place.
884 ///
885 /// # Locking
886 ///
887 /// Note that this requires taking both:
888 ///
889 /// - The map's read lock, and so it will block until all other threads have
890 /// finished any write operations.
891 /// - The mutex on the slot the handle is mapped to.
892 ///
893 /// And so it will block if there are ongoing write operations, or if
894 /// another thread is reading from the same handle.
895 pub fn get_u64<F, E, R>(&self, u: u64, callback: F) -> Result<R, E>
896 where
897 F: FnOnce(&T) -> Result<R, E>,
898 E: From<HandleError>,
899 {
900 self.get(Handle::from_u64(u)?, callback)
901 }
902
903 /// Convenient wrapper for [`Self::get_mut`] which takes a `u64` that it will
904 /// convert to a handle.
905 ///
906 /// The main benefit (besides convenience) of this over the version
907 /// that takes a [`Handle`] is that it allows handling handle-related errors
908 /// in one place.
909 ///
910 /// # Locking
911 ///
912 /// Note that this requires taking both:
913 ///
914 /// - The map's read lock, and so it will block until all other threads have
915 /// finished any write operations.
916 /// - The mutex on the slot the handle is mapped to.
917 ///
918 /// And so it will block if there are ongoing write operations, or if
919 /// another thread is reading from the same handle.
920 pub fn get_mut_u64<F, E, R>(&self, u: u64, callback: F) -> Result<R, E>
921 where
922 F: FnOnce(&mut T) -> Result<R, E>,
923 E: From<HandleError>,
924 {
925 self.get_mut(Handle::from_u64(u)?, callback)
926 }
927
928 /// Helper that performs both a
929 /// [`call_with_result`][crate::call_with_result] and
930 /// [`get`](ConcurrentHandleMap::get_mut).
931 pub fn call_with_result_mut<R, E, F>(
932 &self,
933 out_error: &mut ExternError,
934 h: u64,
935 callback: F,
936 ) -> R::Value
937 where
938 F: std::panic::UnwindSafe + FnOnce(&mut T) -> Result<R, E>,
939 ExternError: From<E>,
940 R: IntoFfi,
941 {
942 use crate::call_with_result;
943 call_with_result(out_error, || -> Result<_, ExternError> {
944 // We can't reuse get_mut here because it would require E:
945 // From<HandleError>, which is inconvenient...
946 let h = Handle::from_u64(h)?;
947 let map = self.map.read().unwrap();
948 let mtx = map.get(h)?;
949 let mut hm = mtx.lock().unwrap();
950 Ok(callback(&mut *hm)?)
951 })
952 }
953
954 /// Helper that performs both a
955 /// [`call_with_result`][crate::call_with_result] and
956 /// [`get`](ConcurrentHandleMap::get).
957 pub fn call_with_result<R, E, F>(
958 &self,
959 out_error: &mut ExternError,
960 h: u64,
961 callback: F,
962 ) -> R::Value
963 where
964 F: std::panic::UnwindSafe + FnOnce(&T) -> Result<R, E>,
965 ExternError: From<E>,
966 R: IntoFfi,
967 {
968 self.call_with_result_mut(out_error, h, |r| callback(r))
969 }
970
971 /// Helper that performs both a
972 /// [`call_with_output`][crate::call_with_output] and
973 /// [`get`](ConcurrentHandleMap::get).
974 pub fn call_with_output<R, F>(
975 &self,
976 out_error: &mut ExternError,
977 h: u64,
978 callback: F,
979 ) -> R::Value
980 where
981 F: std::panic::UnwindSafe + FnOnce(&T) -> R,
982 R: IntoFfi,
983 {
984 self.call_with_result(out_error, h, |r| -> Result<_, HandleError> {
985 Ok(callback(r))
986 })
987 }
988
989 /// Helper that performs both a
990 /// [`call_with_output`][crate::call_with_output] and
991 /// [`get_mut`](ConcurrentHandleMap::get).
992 pub fn call_with_output_mut<R, F>(
993 &self,
994 out_error: &mut ExternError,
995 h: u64,
996 callback: F,
997 ) -> R::Value
998 where
999 F: std::panic::UnwindSafe + FnOnce(&mut T) -> R,
1000 R: IntoFfi,
1001 {
1002 self.call_with_result_mut(out_error, h, |r| -> Result<_, HandleError> {
1003 Ok(callback(r))
1004 })
1005 }
1006
1007 /// Use `constructor` to create and insert a `T`, while inside a
1008 /// [`call_with_result`][crate::call_with_result] call (to handle panics and
1009 /// map errors onto an [`ExternError`][crate::ExternError]).
1010 pub fn insert_with_result<E, F>(&self, out_error: &mut ExternError, constructor: F) -> u64
1011 where
1012 F: std::panic::UnwindSafe + FnOnce() -> Result<T, E>,
1013 ExternError: From<E>,
1014 {
1015 use crate::call_with_result;
1016 call_with_result(out_error, || -> Result<_, ExternError> {
1017 // Note: it's important that we don't call the constructor while
1018 // we're holding the write lock, because we don't want to poison
1019 // the entire map if it panics!
1020 let to_insert = constructor()?;
1021 Ok(self.insert(to_insert))
1022 })
1023 }
1024
1025 /// Equivalent to
1026 /// [`insert_with_result`](ConcurrentHandleMap::insert_with_result) for the
1027 /// case where the constructor cannot produce an error.
1028 ///
1029 /// The name is somewhat dubious, since there's no `output`, but it's
1030 /// intended to make it clear that it contains a
1031 /// [`call_with_output`][crate::call_with_output] internally.
1032 pub fn insert_with_output<F>(&self, out_error: &mut ExternError, constructor: F) -> u64
1033 where
1034 F: std::panic::UnwindSafe + FnOnce() -> T,
1035 {
1036 // The Err type isn't important here beyond being convertable to ExternError
1037 self.insert_with_result(out_error, || -> Result<_, HandleError> {
1038 Ok(constructor())
1039 })
1040 }
1041}
1042
1043impl<T> Default for ConcurrentHandleMap<T> {
1044 #[inline]
1045 fn default() -> Self {
1046 Self::new()
1047 }
1048}
1049
1050// Returns the next map_id.
1051fn next_handle_map_id() -> u16 {
1052 let id = HANDLE_MAP_ID_COUNTER
1053 .fetch_add(1, Ordering::SeqCst)
1054 .wrapping_add(1);
1055 id as u16
1056}
1057
1058// Note: These IDs are only used to detect using a key against the wrong HandleMap.
1059// We ensure they're randomly initialized, to prevent using them across separately
1060// compiled .so files.
1061lazy_static::lazy_static! {
1062 // This should be `AtomicU16`, but those aren't stablilized yet.
1063 // Instead, we just cast to u16 on read.
1064 static ref HANDLE_MAP_ID_COUNTER: AtomicUsize = {
1065 // Abuse HashMap's RandomState to get a strong RNG without bringing in
1066 // the `rand` crate (OTOH maybe we should just bring in the rand crate?)
1067 use std::collections::hash_map::RandomState;
1068 use std::hash::{BuildHasher, Hasher};
1069 let init = RandomState::new().build_hasher().finish() as usize;
1070 AtomicUsize::new(init)
1071 };
1072}
1073
1074#[cfg(test)]
1075mod test {
1076 use super::*;
1077
1078 #[derive(PartialEq, Debug)]
1079 pub(super) struct Foobar(usize);
1080
1081 #[test]
1082 fn test_invalid_handle() {
1083 assert_eq!(Handle::from_u64(0), Err(HandleError::NullHandle));
1084 // Valid except `version` is odd
1085 assert_eq!(
1086 Handle::from_u64((u64::from(HANDLE_MAGIC) << 48) | 0x1234_0012_0001),
1087 Err(HandleError::InvalidHandle)
1088 );
1089
1090 assert_eq!(
1091 Handle::from_u64((u64::from(HANDLE_MAGIC) << 48) | 0x1234_0012_0002),
1092 Ok(Handle {
1093 version: 0x0002,
1094 index: 0x0012,
1095 map_id: 0x1234,
1096 })
1097 );
1098 }
1099
1100 #[test]
1101 fn test_correct_value_single() {
1102 let mut map = HandleMap::new();
1103 let handle = map.insert(Foobar(1234));
1104 assert_eq!(map.get(handle).unwrap(), &Foobar(1234));
1105 map.delete(handle).unwrap();
1106 assert_eq!(map.get(handle), Err(HandleError::StaleVersion));
1107 }
1108
1109 #[test]
1110 fn test_correct_value_multiple() {
1111 let mut map = HandleMap::new();
1112 let handle1 = map.insert(Foobar(1234));
1113 let handle2 = map.insert(Foobar(4321));
1114 assert_eq!(map.get(handle1).unwrap(), &Foobar(1234));
1115 assert_eq!(map.get(handle2).unwrap(), &Foobar(4321));
1116 map.delete(handle1).unwrap();
1117 assert_eq!(map.get(handle1), Err(HandleError::StaleVersion));
1118 assert_eq!(map.get(handle2).unwrap(), &Foobar(4321));
1119 }
1120
1121 #[test]
1122 fn test_wrong_map() {
1123 let mut map1 = HandleMap::new();
1124 let mut map2 = HandleMap::new();
1125
1126 let handle1 = map1.insert(Foobar(1234));
1127 let handle2 = map2.insert(Foobar(1234));
1128
1129 assert_eq!(map1.get(handle1).unwrap(), &Foobar(1234));
1130 assert_eq!(map2.get(handle2).unwrap(), &Foobar(1234));
1131
1132 assert_eq!(map1.get(handle2), Err(HandleError::WrongMap));
1133 assert_eq!(map2.get(handle1), Err(HandleError::WrongMap));
1134 }
1135
1136 #[test]
1137 fn test_bad_index() {
1138 let map: HandleMap<Foobar> = HandleMap::new();
1139 assert_eq!(
1140 map.get(Handle {
1141 map_id: map.id,
1142 version: 2,
1143 index: 100
1144 }),
1145 Err(HandleError::IndexPastEnd)
1146 );
1147 }
1148
1149 #[test]
1150 fn test_resizing() {
1151 let mut map = HandleMap::new();
1152 let mut handles = vec![];
1153 for i in 0..1000 {
1154 handles.push(map.insert(Foobar(i)))
1155 }
1156 for (i, &h) in handles.iter().enumerate() {
1157 assert_eq!(map.get(h).unwrap(), &Foobar(i));
1158 assert_eq!(map.remove(h).unwrap(), Foobar(i));
1159 }
1160 let mut handles2 = vec![];
1161 for i in 1000..2000 {
1162 // Not really related to this test, but it's convenient to check this here.
1163 let h = map.insert(Foobar(i));
1164 let hu = h.into_u64();
1165 assert_eq!(Handle::from_u64(hu).unwrap(), h);
1166 handles2.push(hu);
1167 }
1168
1169 for (i, (&h0, h1u)) in handles.iter().zip(handles2).enumerate() {
1170 // It's still a stale version, even though the slot is occupied again.
1171 assert_eq!(map.get(h0), Err(HandleError::StaleVersion));
1172 let h1 = Handle::from_u64(h1u).unwrap();
1173 assert_eq!(map.get(h1).unwrap(), &Foobar(i + 1000));
1174 }
1175 }
1176
1177 /// Tests that check our behavior when panicing.
1178 ///
1179 /// Naturally these require panic=unwind, which means we can't run them when
1180 /// generating coverage (well, `-Zprofile`-based coverage can't -- although
1181 /// ptrace-based coverage like tarpaulin can), and so we turn them off.
1182 ///
1183 /// (For clarity, `cfg(coverage)` is not a standard thing. We add it in
1184 /// `automation/emit_coverage_info.sh`, and you can force it by adding
1185 /// "--cfg coverage" to your RUSTFLAGS manually if you need to do so).
1186 #[cfg(not(coverage))]
1187 mod panic_tests {
1188 use super::*;
1189
1190 struct PanicOnDrop(());
1191 impl Drop for PanicOnDrop {
1192 fn drop(&mut self) {
1193 panic!("intentional panic (drop)");
1194 }
1195 }
1196
1197 #[test]
1198 fn test_panicking_drop() {
1199 let map = ConcurrentHandleMap::new();
1200 let h = map.insert(PanicOnDrop(())).into_u64();
1201 let mut e = ExternError::success();
1202 crate::call_with_result(&mut e, || map.delete_u64(h));
1203 assert_eq!(e.get_code(), crate::ErrorCode::PANIC);
1204 let _ = unsafe { e.get_and_consume_message() };
1205 assert!(!map.map.is_poisoned());
1206 let inner = map.map.read().unwrap();
1207 inner.assert_valid();
1208 assert_eq!(inner.len(), 0);
1209 }
1210
1211 #[test]
1212 fn test_panicking_call_with() {
1213 let map = ConcurrentHandleMap::new();
1214 let h = map.insert(Foobar(0)).into_u64();
1215 let mut e = ExternError::success();
1216 map.call_with_output(&mut e, h, |_thing| {
1217 panic!("intentional panic (call_with_output)");
1218 });
1219
1220 assert_eq!(e.get_code(), crate::ErrorCode::PANIC);
1221 let _ = unsafe { e.get_and_consume_message() };
1222
1223 {
1224 assert!(!map.map.is_poisoned());
1225 let inner = map.map.read().unwrap();
1226 inner.assert_valid();
1227 assert_eq!(inner.len(), 1);
1228 let mut seen = false;
1229 for e in &inner.entries {
1230 if let EntryState::Active(v) = &e.state {
1231 assert!(!seen);
1232 assert!(v.is_poisoned());
1233 seen = true;
1234 }
1235 }
1236 }
1237 assert!(map.delete_u64(h).is_ok());
1238 assert!(!map.map.is_poisoned());
1239 let inner = map.map.read().unwrap();
1240 inner.assert_valid();
1241 assert_eq!(inner.len(), 0);
1242 }
1243
1244 #[test]
1245 fn test_panicking_insert_with() {
1246 let map = ConcurrentHandleMap::new();
1247 let mut e = ExternError::success();
1248 let res = map.insert_with_output(&mut e, || {
1249 panic!("intentional panic (insert_with_output)");
1250 });
1251
1252 assert_eq!(e.get_code(), crate::ErrorCode::PANIC);
1253 let _ = unsafe { e.get_and_consume_message() };
1254
1255 assert_eq!(res, 0);
1256
1257 assert!(!map.map.is_poisoned());
1258 let inner = map.map.read().unwrap();
1259 inner.assert_valid();
1260 assert_eq!(inner.len(), 0);
1261 }
1262 }
1263}