Expand description
§ferroid
ferroid
is a Rust crate for generating
and parsing Snowflake and ULID identifiers.
§Features
- 📌 Bit-level compatibility with major Snowflake and ULID formats
- 🧩 Pluggable clocks and RNGs via
TimeSource
andRandSource
- 🧵 Lock-free, lock-based, and single-threaded generators
- 📐 Custom layouts via
define_snowflake_id!
anddefine_ulid!
macros - 🔢 Crockford base32 support with
base32
feature flag
§📦 Supported Layouts
§Snowflake
Platform | Timestamp Bits | Machine ID Bits | Sequence Bits | Epoch |
---|---|---|---|---|
41 | 10 | 12 | 2010-11-04 01:42:54.657 | |
Discord | 42 | 10 | 12 | 2015-01-01 00:00:00.000 |
41 | 13 | 10 | 2011-01-01 00:00:00.000 | |
Mastodon | 48 | 0 | 16 | 1970-01-01 00:00:00.000 |
§Ulid
Platform | Timestamp Bits | Random Bits | Epoch |
---|---|---|---|
ULID | 48 | 80 | 1970-01-01 00:00:00.000 |
§🔧 Generator Comparison
Snowflake Generator | Monotonic | Thread-Safe | Lock-Free | Throughput | Use Case |
---|---|---|---|---|---|
BasicSnowflakeGenerator | ✅ | ❌ | ❌ | Highest | Single-threaded or generator per thread |
LockSnowflakeGenerator | ✅ | ✅ | ❌ | Medium | Fair multithreaded access |
AtomicSnowflakeGenerator | ✅ | ✅ | ✅ | High | Fast concurrent generation (less fair) |
Ulid Generator | Monotonic | Thread-Safe | Lock-Free | Throughput | Use Case |
---|---|---|---|---|---|
BasicUlidGenerator | ✅ | ❌ | ❌ | Highest | Single-threaded or generator per thread |
LockUlidGenerator | ✅ | ✅ | ❌ | Medium | Fair multithreaded access |
§🚀 Usage
§Generate an ID
§Synchronous
Calling next_id()
may yield Pending
if the current sequence is exhausted. In
that case, you can spin, yield, or sleep depending on your environment:
#[cfg(feature = "snowflake")]
{
use ferroid::{MonotonicClock, TWITTER_EPOCH, BasicSnowflakeGenerator, SnowflakeTwitterId, IdGenStatus};
let clock = MonotonicClock::with_epoch(TWITTER_EPOCH);
let generator = BasicSnowflakeGenerator::new(0, clock);
let id: SnowflakeTwitterId = loop {
match generator.next_id() {
IdGenStatus::Ready { id } => break id,
IdGenStatus::Pending { yield_for } => {
println!("Exhausted; wait for: {}ms", yield_for);
core::hint::spin_loop(); // Blocking spin: burns CPU, but yields the lowest latency.
// std::thread::yield_now(); // Optional: yields to OS, still busy-waits.
// std::thread::sleep(Duration::from_millis(yield_for.to_u64().unwrap())); // Lowest CPU use, but imprecise and may oversleep.
//
// For non-blocking ID generation, use the async API (see below).
}
}
};
}
#[cfg(feature = "ulid")]
{
use ferroid::{MonotonicClock, IdGenStatus, UNIX_EPOCH, ThreadRandom, BasicUlidGenerator, ULID};
let clock = MonotonicClock::with_epoch(UNIX_EPOCH);
let rand = ThreadRandom::default();
let generator = BasicUlidGenerator::new(clock, rand);
let id: ULID = loop {
match generator.next_id() {
IdGenStatus::Ready { id } => break id,
IdGenStatus::Pending { yield_for } => {
println!("Exhausted; wait for: {}ms", yield_for);
core::hint::spin_loop(); // Blocking spin: burns CPU, but yields the lowest latency.
// std::thread::yield_now(); // Optional: yields to OS, still busy-waits.
// std::thread::sleep(Duration::from_millis(yield_for.to_u64().unwrap())); // Lowest CPU use, but imprecise and may oversleep.
//
// For non-blocking ID generation, use the async API (see below).
}
}
};
println!("Generated ID: {}", id);
}
§Asynchronous
If you’re in an async context (e.g., using Tokio or Smol), you can enable one of the following features:
async-tokio
async-smol
#[cfg(feature = "async-tokio")]
{
use ferroid::{Result, MonotonicClock, MASTODON_EPOCH, UNIX_EPOCH};
#[tokio::main]
async fn main() -> Result<()> {
#[cfg(feature = "snowflake")]
{
use ferroid::{
AtomicSnowflakeGenerator, SnowflakeMastodonId,
SnowflakeGeneratorAsyncTokioExt
};
let clock = MonotonicClock::with_epoch(MASTODON_EPOCH);
let generator = AtomicSnowflakeGenerator::new(0, clock);
let id: SnowflakeMastodonId = generator.try_next_id_async().await?;
println!("Generated ID: {}", id);
}
#[cfg(feature = "ulid")]
{
use ferroid::{ThreadRandom, UlidGeneratorAsyncTokioExt, BasicUlidGenerator, ULID};
let clock = MonotonicClock::with_epoch(UNIX_EPOCH);
let rand = ThreadRandom::default();
let generator = BasicUlidGenerator::new(clock, rand);
let id: ULID = generator.try_next_id_async().await?;
println!("Generated ID: {}", id);
}
Ok(())
}
main().expect("failed to run")
}
#[cfg(feature = "async-smol")]
{
use ferroid::{Result, MonotonicClock};
fn main() -> Result<()> {
smol::block_on(async {
#[cfg(feature = "snowflake")]
{
use ferroid::{
AtomicSnowflakeGenerator, SnowflakeMastodonId,
SnowflakeGeneratorAsyncSmolExt, CUSTOM_EPOCH
};
let clock = MonotonicClock::with_epoch(CUSTOM_EPOCH);
let generator = AtomicSnowflakeGenerator::new(0, clock);
let id: SnowflakeMastodonId = generator.try_next_id_async().await?;
println!("Generated ID: {}", id);
}
#[cfg(feature = "ulid")]
{
use ferroid::{ThreadRandom, UlidGeneratorAsyncSmolExt, BasicUlidGenerator, ULID, UNIX_EPOCH};
let clock = MonotonicClock::with_epoch(UNIX_EPOCH);
let rand = ThreadRandom::default();
let generator = BasicUlidGenerator::new(clock, rand);
let id: ULID = generator.try_next_id_async().await?;
println!("Generated ID: {}", id);
}
Ok(())
})
}
main().expect("failed to run")
}
§Custom Layouts
To define a custom layouts, use the define_*
macros:
#[cfg(feature = "snowflake")]
{
use ferroid::{define_snowflake_id};
// Example: a 64-bit Twitter-like ID layout
//
// Bit Index: 63 63 62 22 21 12 11 0
// +--------------+----------------+-----------------+---------------+
// Field: | reserved (1) | timestamp (41) | machine ID (10) | sequence (12) |
// +--------------+----------------+-----------------+---------------+
// |<----------- MSB ---------- 64 bits ----------- LSB ------------>|
define_snowflake_id!(
MyCustomId, u64,
reserved: 1,
timestamp: 41,
machine_id: 10,
sequence: 12
);
// Example: a 128-bit extended ID layout
//
// Bit Index: 127 88 87 40 39 20 19 0
// +---------------+----------------+-----------------+---------------+
// Field: | reserved (40) | timestamp (48) | machine ID (20) | sequence (20) |
// +---------------+----------------+-----------------+---------------+
// |<----- HI 64 bits ----->|<-------------- LO 64 bits ------------->|
// |<--- MSB ------ LSB --->|<----- MSB ----- 64 bits ----- LSB ----->|
define_snowflake_id!(
MyCustomLongId, u128,
reserved: 40,
timestamp: 48,
machine_id: 20,
sequence: 20
);
}
#[cfg(feature = "ulid")]
{
use ferroid::define_ulid;
// Example: a 128-bit ULID using the Ulid layout
//
// - 0 bits reserved
// - 48 bits timestamp
// - 80 bits random
//
// Bit Index: 127 80 79 0
// +----------------+-------------+
// Field: | timestamp (48) | random (80) |
// +----------------+-------------+
// |<-- MSB -- 128 bits -- LSB -->|
define_ulid!(
MyULID, u128,
reserved: 0,
timestamp: 48,
random: 80
);
}
⚠️ Note: All four sections (
reserved
,timestamp
,machine_id
, andsequence
) must be specified in the snowflake macro, even if a section uses 0 bits.reserved
bits are always stored as zero and can be used for future expansion. Similarly, the ulid macro requries (reserved
,timestamp
, andrandom
) fields.
§Behavior
§Snowflake
- If the clock advances: reset sequence to 0 →
IdGenStatus::Ready
- If the clock is unchanged: increment sequence →
IdGenStatus::Ready
- If the clock goes backward: return
IdGenStatus::Pending
- If the sequence increment overflows: return
IdGenStatus::Pending
§Ulid
This implementation respects monotonicity within the same millisecond in a single generator by incrementing the random portion of the ID and guarding against overflow.
- If the clock advances: generate new random →
IdGenStatus::Ready
- If the clock is unchanged: increment random →
IdGenStatus::Ready
- If the clock goes backward: return
IdGenStatus::Pending
- If the random increment overflows: return
IdGenStatus::Pending
§Probability of ID Collisions
When generating time-sortable IDs that use random bits, it’s important to estimate the probability of collisions (i.e., two IDs being the same within the same millisecond), given your ID layout and system throughput.
§Monotonic IDs with Multiple ULID Generators
If you have $g$ generators (e.g., distributed nodes), and each generator produces $k$ sequential (monotonic) IDs per millisecond by incrementing from a random starting point, the probability that any two generators produce overlapping IDs in the same millisecond is approximately:
$$P_\text{collision} \approx \frac{g(g-1)(2k-1)}{2 \cdot 2^r}$$
Where:
- $g$ = number of generators
- $k$ = number of monotonic IDs per generator per millisecond
- $r$ = number of random bits per ID
- $P_\text{collision}$ = probability of at least one collision
Note: The formula above uses the approximate (birthday bound) model, which assumes that:
- $k \ll 2^r$ and $g \ll 2^r$
- Each generator’s range of $k$ IDs starts at a uniformly random position within the $r$-bit space
§Estimating Time Until a Collision Occurs
While collisions only happen within a single millisecond, we often want to know how long it takes before any collision happens, given continuous generation over time.
The expected time in milliseconds to reach a 50% chance of collision is:
$T_{\text{50%}} \approx \frac{\ln 2}{P_\text{collision}} = \frac{0.6931 \cdot 2 \cdot 2^r}{g(g - 1)(2k - 1)}$
This is derived from the cumulative probability formula:
$P_\text{collision}(T) = 1 - (1 - P_\text{collision})^T$
Solving for $T$ when $P_\text{collision}(T) = 0.5$:
$(1 - P_\text{collision})^T = 0.5$
$\Rightarrow T \approx \frac{\ln(0.5)}{\ln(1 - P_\text{collision})}$
Using the approximation $\ln(1 - x) \approx -x$ for small $x$, this simplifies to:
$\Rightarrow T \approx \frac{\ln 2}{P_\text{collision}}$
The $\ln 2$ term arises because $\ln(0.5) = -\ln 2$. After $T_\text{50%}$ milliseconds, there’s a 50% chance that at least one collision has occurred.
Generators ($g$) | IDs per generator per ms ($k$) | $P_\text{collision}$ | Estimated Time to 50% Collision ($T_{\text{50%}}$) |
---|---|---|---|
1 | 1 | $0$ (single generator; no collision possible) | ∞ (no collision possible) |
1 | 65,536 | $0$ (single generator; no collision possible) | ∞ (no collision possible) |
2 | 1 | $\displaystyle \frac{2 \times 1 \times 1}{2 \cdot 2^{80}} \approx 8.27 \times 10^{-25}$ | $\approx 8.38 \times 10^{23} \text{ ms}$ |
2 | 65,536 | $\displaystyle \frac{2 \times 1 \times 131{,}071}{2 \cdot 2^{80}} \approx 1.08 \times 10^{-19}$ | $\approx 6.41 \times 10^{18} \text{ ms}$ |
1,000 | 1 | $\displaystyle \frac{1{,}000 \times 999 \times 1}{2 \cdot 2^{80}} \approx 4.13 \times 10^{-19}$ | $\approx 1.68 \times 10^{18} \text{ ms}$ |
1,000 | 65,536 | $\displaystyle \frac{1{,}000 \times 999 \times 131{,}071}{2 \cdot 2^{80}} \approx 5.42 \times 10^{-14}$ | $\approx 1.28 \times 10^{13} \text{ ms} \approx 406\ years$ |
§Serialize as padded string
Use .to_padded_string()
or .encode()
for sortable string representations:
#[cfg(feature = "snowflake")]
{
use ferroid::{Snowflake, SnowflakeTwitterId};
let id = SnowflakeTwitterId::from(123456, 1, 42);
assert_eq!(format!("default: {id}"), "default: 517811998762");
assert_eq!(format!("padded: {}", id.to_padded_string()), "padded: 00000000517811998762");
#[cfg(feature = "base32")]
{
use ferroid::Base32SnowExt;
let encoded = id.encode();
assert_eq!(format!("base32: {encoded}"), "base32: 00000F280041A");
let decoded = SnowflakeTwitterId::decode(&encoded).expect("decode should succeed");
assert_eq!(id, decoded);
}
}
#[cfg(feature = "ulid")]
{
use ferroid::{Ulid, ULID};
let id = ULID::from(123456, 42);
assert_eq!(format!("default: {id}"), "default: 149249145986343659392525664298");
assert_eq!(format!("padded: {}", id.to_padded_string()), "padded: 000000000149249145986343659392525664298");
#[cfg(feature = "base32")]
{
use ferroid::Base32UlidExt;
let encoded = id.encode();
assert_eq!(format!("base32: {encoded}"), "base32: 0000003RJ0000000000000001A");
let decoded = ULID::decode(&encoded).expect("decode should succeed");
assert_eq!(decoded.timestamp(), 123456);
assert_eq!(decoded.random(), 42);
assert_eq!(id, decoded);
let decoded = ULID::decode("01ARZ3NDEKTSV4RRFFQ69G5FAV").unwrap();
assert_eq!(decoded.timestamp(), 1469922850259);
assert_eq!(decoded.random(), 1012768647078601740696923);
}
}
§📈 Benchmarks
Snowflake ID generation is theoretically capped by:
max IDs/sec = 2^sequence_bits × 1000ms
For example, Twitter-style IDs (12 sequence bits) allow:
4096 IDs/ms × 1000 ms/sec = ~4M IDs/sec
To benchmark this, we generate IDs in chunks of 4096, which aligns with the sequence limit per millisecond in Snowflake layouts. For ULIDs, we use the same chunk size for consistency, but this number does not represent a hard throughput cap - ULID generation is probabilistic: monotonicity within the same millisecond increments the random bit value. Chunking here primarily serves to keep the benchmark code consistent.
Async benchmarks are tricky because a single generator’s performance is affected by task scheduling, which is not predictable and whose scheduler typically has a resolution of 1 millisecond. By the time a task is scheduled to execute (i.e., generate an ID), a millisecond may have already passed, potentially resetting any sequence counter or monotonic increment - thus, never truly testing the hot path. To mitigate this, async tests measure maximum throughput: each task generates a batch of IDs and may await on any of them. This approach offsets idle time on one generator with active work on another, yielding more representative throughput numbers.
§Snowflake:
- Sync: Benchmarks the hot path without yielding to the clock.
- Async: Also uses 4096-ID batches, but may yield (sequence exhaustion/CAS failure) or await due to task scheduling, reducing throughput.
§ULID:
- Sync & Async: Uses the same 4096-ID batches. Due to random number generation, monotonic increments may overflow randomly, reflecting real-world behavior. In general, it is rare for ULIDs to overflow.
Tests were ran on an M1 Macbook Pro 14“, 32GB, 10 cores (8 performance, 2 efficiency).
§Synchronous Generators
Generator | Time per ID | Throughput |
---|---|---|
BasicSnowflakeGenerator | ~2.8 ns | ~353M IDs/sec |
LockSnowflakeGenerator | ~8.9 ns | ~111M IDs/sec |
AtomicSnowflakeGenerator | ~3.1 ns | ~320M IDs/sec |
BasicUlidGenerator | ~3.4 ns | ~288M IDs/sec |
LockUlidGenerator | ~9.2 ns | ~109M IDs/sec |
§Async (Tokio Runtime) - Peak throughput
Generator | Generators | Time per ID | Throughput |
---|---|---|---|
LockSnowflakeGenerator | 1024 | ~1.46 ns | ~687M IDs/sec |
AtomicSnowflakeGenerator | 1024 | ~0.86 ns | ~1.17B IDs/sec |
LockUlidGenerator | 1024 | ~1.57 ns | ~635M IDs/sec |
§Async (Smol Runtime) - Peak throughput
Generator | Generators | Time per ID | Throughput |
---|---|---|---|
LockSnowflakeGenerator | 1024 | ~1.40 ns | ~710M IDs/sec |
AtomicSnowflakeGenerator | 1024 | ~0.62 ns | ~1.61B IDs/sec |
LockUlidGenerator | 1024 | ~1.32 ns | ~756M IDs/sec |
To run all benchmarks:
cargo criterion --all-features
§🧪 Testing
Run all tests with:
cargo test --all-features
§📄 License
Licensed under either of:
at your option.
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.
Macros§
- define_
snowflake_ id - Field Ordering Semantics
- define_
ulid - Field Ordering Semantics
Structs§
- Atomic
Snowflake Generator - A lock-free Snowflake ID generator suitable for multi-threaded environments.
- Basic
Snowflake Generator - A non-concurrent Snowflake ID generator suitable for single-threaded environments.
- Basic
Ulid Generator - A monotonic ULID-style ID generator suitable for single-threaded environments.
- Lock
Snowflake Generator - A lock-based Snowflake ID generator suitable for multi-threaded environments.
- Lock
Ulid Generator - A monotonic ULID-style ID generator suitable for multi-threaded environments.
- Monotonic
Clock - A monotonic time source that returns elapsed time since process start, offset from a user-defined epoch.
- Smol
Sleep - An implementation of
SleepProvider
using Smol’s timer. - Smol
Sleep Future - Internal future returned by
SmolSleep::sleep_for
. - Smol
Yield - An implementation of
SleepProvider
using Smol’s yield. - Snowflake
Discord Id - A 64-bit Snowflake ID using the Discord layout
- Snowflake
Generator Future - A future that polls a
SnowflakeGenerator
until it is ready to produce an ID. - Snowflake
Instagram Id - A 64-bit Snowflake ID using the Instagram layout
- Snowflake
Long Id - A 128-bit Snowflake ID using a hybrid layout.
- Snowflake
Mastodon Id - A 64-bit Snowflake ID using the Mastodon layout
- Snowflake
Twitter Id - A 64-bit Snowflake ID using the Twitter layout
- Thread
Random - A
RandSource
that uses the thread-local RNG (rand::thread_rng()
). - Tokio
Sleep - An implementation of
SleepProvider
using Tokio’s timer. - Tokio
Yield - An implementation of
SleepProvider
using Tokio’s yield. - ULID
- A 128-bit Ulid using the ULID layout
- Ulid
Generator Future - A future that polls a
UlidGenerator
until it is ready to produce an ID.
Enums§
- Base32
Error - Error
- IdGen
Status - Represents the result of attempting to generate a new Snowflake ID.
Constants§
- CUSTOM_
EPOCH - Custom epoch: Wednesday, January 1, 2025 00:00:00 UTC
- DISCORD_
EPOCH - Discord epoch: Thursday, January 1, 2015 00:00:00 UTC
- INSTAGRAM_
EPOCH - Instagram epoch: Saturday, January 1, 2011 00:00:00 UTC
- MASTODON_
EPOCH - Mastodon epoch: Thursday, January 1, 1970 00:00:00 UTC
- TWITTER_
EPOCH - Twitter epoch: Thursday, November 4, 2010 1:42:54.657 UTC
- UNIX_
EPOCH - Unix epoch: Thursday, January 1, 1970 00:00:00 UTC
Traits§
- Base32
Ext - Extension trait for types that support Crockford Base32 encoding and decoding.
- Base32
Snow Ext - Extension trait for types that support Crockford Base32 encoding and decoding.
- Base32
Ulid Ext - Extension trait for types that support Crockford Base32 encoding and decoding.
- BeBytes
- A trait for types that can be encoded to and decoded from big-endian bytes.
- Id
- Rand
Source - A trait for random sources that return a random byte integers.
- Sleep
Provider - A trait that abstracts over how to sleep for a given
Duration
in async contexts. - Snowflake
- A trait representing a layout-compatible Snowflake ID generator.
- Snowflake
Generator - A minimal interface for generating Snowflake IDs
- Snowflake
Generator Async Ext - Extension trait for asynchronously generating Snowflake IDs.
- Snowflake
Generator Async Smol Ext - Extension trait for asynchronously generating Snowflake IDs using the
smol
async runtime. - Snowflake
Generator Async Tokio Ext - Extension trait for asynchronously generating Snowflake IDs using the
tokio
async runtime. - Time
Source - A trait for time sources that return a monotonic or wall-clock timestamp.
- ToU64
- Trait for converting numeric-like values into a
u64
. - Ulid
- Trait for layout-compatible ULID-style identifiers.
- Ulid
Generator - A minimal interface for generating Ulid IDs
- Ulid
Generator Async Ext - Extension trait for asynchronously generating ULIDs.
- Ulid
Generator Async Smol Ext - Extension trait for asynchronously generating ULIDs using the
smol
async runtime. - Ulid
Generator Async Tokio Ext - Extension trait for asynchronously generating ULIDs using the
tokio
async runtime.