1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
use super::{DensityInitialization, State};
use crate::equation_of_state::{IdealGas, Residual};
use crate::errors::EosResult;
use crate::si::*;
use ndarray::Array1;
use std::sync::Arc;
/// A simple tool to construct [State]s with arbitrary input parameters.
///
/// # Examples
/// ```
/// # use feos_core::{EosResult, StateBuilder};
/// # use feos_core::cubic::{PengRobinson, PengRobinsonParameters};
/// # use feos_core::si::*;
/// # use std::sync::Arc;
/// # use ndarray::arr1;
/// # use approx::assert_relative_eq;
/// # use typenum::P3;
/// # fn main() -> EosResult<()> {
/// // Create a state for given T,V,N
/// let eos = Arc::new(PengRobinson::new(Arc::new(PengRobinsonParameters::new_simple(&[369.8], &[41.9 * 1e5], &[0.15], &[15.0])?)));
/// let state = StateBuilder::new(&eos)
/// .temperature(300.0 * KELVIN)
/// .volume(12.5 * METER.powi::<P3>())
/// .moles(&(arr1(&[2.5]) * MOL))
/// .build()?;
/// assert_eq!(state.density, 0.2 * MOL / METER.powi::<P3>());
///
/// // For a pure component, the composition does not need to be specified.
/// let eos = Arc::new(PengRobinson::new(Arc::new(PengRobinsonParameters::new_simple(&[369.8], &[41.9 * 1e5], &[0.15], &[15.0])?)));
/// let state = StateBuilder::new(&eos)
/// .temperature(300.0 * KELVIN)
/// .volume(12.5 * METER.powi::<P3>())
/// .total_moles(2.5 * MOL)
/// .build()?;
/// assert_eq!(state.density, 0.2 * MOL / METER.powi::<P3>());
///
/// // The state can be constructed without providing any extensive property.
/// let eos = Arc::new(PengRobinson::new(
/// Arc::new(PengRobinsonParameters::new_simple(
/// &[369.8, 305.4],
/// &[41.9 * 1e5, 48.2 * 1e5],
/// &[0.15, 0.10],
/// &[15.0, 30.0]
/// )?)
/// ));
/// let state = StateBuilder::new(&eos)
/// .temperature(300.0 * KELVIN)
/// .partial_density(&(arr1(&[0.2, 0.6]) * MOL / METER.powi::<P3>()))
/// .build()?;
/// assert_relative_eq!(state.molefracs, arr1(&[0.25, 0.75]));
/// assert_relative_eq!(state.density, 0.8 * MOL / METER.powi::<P3>());
/// # Ok(())
/// # }
/// ```
pub struct StateBuilder<'a, E, const IG: bool> {
eos: Arc<E>,
temperature: Option<Temperature>,
volume: Option<Volume>,
density: Option<Density>,
partial_density: Option<&'a Density<Array1<f64>>>,
total_moles: Option<Moles>,
moles: Option<&'a Moles<Array1<f64>>>,
molefracs: Option<&'a Array1<f64>>,
pressure: Option<Pressure>,
molar_enthalpy: Option<MolarEnergy>,
molar_entropy: Option<MolarEntropy>,
molar_internal_energy: Option<MolarEnergy>,
density_initialization: DensityInitialization,
initial_temperature: Option<Temperature>,
}
impl<'a, E: Residual> StateBuilder<'a, E, false> {
/// Create a new `StateBuilder` for the given equation of state.
pub fn new(eos: &Arc<E>) -> Self {
StateBuilder {
eos: eos.clone(),
temperature: None,
volume: None,
density: None,
partial_density: None,
total_moles: None,
moles: None,
molefracs: None,
pressure: None,
molar_enthalpy: None,
molar_entropy: None,
molar_internal_energy: None,
density_initialization: DensityInitialization::None,
initial_temperature: None,
}
}
}
impl<'a, E: Residual, const IG: bool> StateBuilder<'a, E, IG> {
/// Provide the temperature for the new state.
pub fn temperature(mut self, temperature: Temperature) -> Self {
self.temperature = Some(temperature);
self
}
/// Provide the volume for the new state.
pub fn volume(mut self, volume: Volume) -> Self {
self.volume = Some(volume);
self
}
/// Provide the density for the new state.
pub fn density(mut self, density: Density) -> Self {
self.density = Some(density);
self
}
/// Provide partial densities for the new state.
pub fn partial_density(mut self, partial_density: &'a Density<Array1<f64>>) -> Self {
self.partial_density = Some(partial_density);
self
}
/// Provide the total moles for the new state.
pub fn total_moles(mut self, total_moles: Moles) -> Self {
self.total_moles = Some(total_moles);
self
}
/// Provide the moles for the new state.
pub fn moles(mut self, moles: &'a Moles<Array1<f64>>) -> Self {
self.moles = Some(moles);
self
}
/// Provide the molefracs for the new state.
pub fn molefracs(mut self, molefracs: &'a Array1<f64>) -> Self {
self.molefracs = Some(molefracs);
self
}
/// Provide the pressure for the new state.
pub fn pressure(mut self, pressure: Pressure) -> Self {
self.pressure = Some(pressure);
self
}
/// Specify a vapor state.
pub fn vapor(mut self) -> Self {
self.density_initialization = DensityInitialization::Vapor;
self
}
/// Specify a liquid state.
pub fn liquid(mut self) -> Self {
self.density_initialization = DensityInitialization::Liquid;
self
}
/// Provide an initial density used in density iterations.
pub fn initial_density(mut self, initial_density: Density) -> Self {
self.density_initialization = DensityInitialization::InitialDensity(initial_density);
self
}
}
impl<'a, E: Residual + IdealGas, const IG: bool> StateBuilder<'a, E, IG> {
/// Provide the molar enthalpy for the new state.
pub fn molar_enthalpy(mut self, molar_enthalpy: MolarEnergy) -> StateBuilder<'a, E, true> {
self.molar_enthalpy = Some(molar_enthalpy);
self.convert()
}
/// Provide the molar entropy for the new state.
pub fn molar_entropy(mut self, molar_entropy: MolarEntropy) -> StateBuilder<'a, E, true> {
self.molar_entropy = Some(molar_entropy);
self.convert()
}
/// Provide the molar internal energy for the new state.
pub fn molar_internal_energy(
mut self,
molar_internal_energy: MolarEnergy,
) -> StateBuilder<'a, E, true> {
self.molar_internal_energy = Some(molar_internal_energy);
self.convert()
}
/// Provide an initial temperature used in the Newton solver.
pub fn initial_temperature(
mut self,
initial_temperature: Temperature,
) -> StateBuilder<'a, E, true> {
self.initial_temperature = Some(initial_temperature);
self.convert()
}
fn convert(self) -> StateBuilder<'a, E, true> {
StateBuilder {
eos: self.eos,
temperature: self.temperature,
volume: self.volume,
density: self.density,
partial_density: self.partial_density,
total_moles: self.total_moles,
moles: self.moles,
molefracs: self.molefracs,
pressure: self.pressure,
molar_enthalpy: self.molar_enthalpy,
molar_entropy: self.molar_entropy,
molar_internal_energy: self.molar_internal_energy,
density_initialization: self.density_initialization,
initial_temperature: self.initial_temperature,
}
}
}
impl<'a, E: Residual> StateBuilder<'a, E, false> {
/// Try to build the state with the given inputs.
pub fn build(self) -> EosResult<State<E>> {
State::new(
&self.eos,
self.temperature,
self.volume,
self.density,
self.partial_density,
self.total_moles,
self.moles,
self.molefracs,
self.pressure,
self.density_initialization,
)
}
}
impl<'a, E: Residual + IdealGas> StateBuilder<'a, E, true> {
/// Try to build the state with the given inputs.
pub fn build(self) -> EosResult<State<E>> {
State::new_full(
&self.eos,
self.temperature,
self.volume,
self.density,
self.partial_density,
self.total_moles,
self.moles,
self.molefracs,
self.pressure,
self.molar_enthalpy,
self.molar_entropy,
self.molar_internal_energy,
self.density_initialization,
self.initial_temperature,
)
}
}
impl<'a, E, const IG: bool> Clone for StateBuilder<'a, E, IG> {
fn clone(&self) -> Self {
Self {
eos: self.eos.clone(),
temperature: self.temperature,
volume: self.volume,
density: self.density,
partial_density: self.partial_density,
total_moles: self.total_moles,
moles: self.moles,
molefracs: self.molefracs,
pressure: self.pressure,
molar_enthalpy: self.molar_enthalpy,
molar_entropy: self.molar_entropy,
molar_internal_energy: self.molar_internal_energy,
density_initialization: self.density_initialization,
initial_temperature: self.initial_temperature,
}
}
}