1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
use super::{PhaseEquilibrium, SolverOptions, Verbosity};
use crate::density_iteration::pressure_spinodal;
use crate::equation_of_state::EquationOfState;
use crate::errors::{EosError, EosResult};
use crate::state::{Contributions, DensityInitialization, State, TPSpec};
use crate::EosUnit;
use ndarray::{arr1, Array1};
use quantity::{QuantityArray1, QuantityScalar};
use std::convert::TryFrom;
use std::rc::Rc;

const SCALE_T_NEW: f64 = 0.7;

const MAX_ITER_PURE: usize = 50;
const TOL_PURE: f64 = 1e-12;

/// # Pure component phase equilibria
impl<U: EosUnit, E: EquationOfState> PhaseEquilibrium<U, E, 2> {
    /// Calculate a phase equilibrium for a pure component.
    pub fn pure(
        eos: &Rc<E>,
        temperature_or_pressure: QuantityScalar<U>,
        initial_state: Option<&PhaseEquilibrium<U, E, 2>>,
        options: SolverOptions,
    ) -> EosResult<Self>
    where
        QuantityScalar<U>: std::fmt::Display + std::fmt::LowerExp,
    {
        match TPSpec::try_from(temperature_or_pressure)? {
            TPSpec::Temperature(t) => Self::pure_t(eos, t, initial_state, options),
            TPSpec::Pressure(p) => Self::pure_p(eos, p, initial_state, options),
        }
    }

    /// Calculate a phase equilibrium for a pure component
    /// and given temperature.
    fn pure_t(
        eos: &Rc<E>,
        temperature: QuantityScalar<U>,
        initial_state: Option<&PhaseEquilibrium<U, E, 2>>,
        options: SolverOptions,
    ) -> EosResult<Self>
    where
        QuantityScalar<U>: std::fmt::Display + std::fmt::LowerExp,
    {
        let (max_iter, tol, verbosity) = options.unwrap_or(MAX_ITER_PURE, TOL_PURE);

        // First use given initial state if applicable
        let mut vle = initial_state.and_then(|init| {
            Self::init_pure_state(init, temperature)
                .and_then(|vle| vle.iterate_pure_t(max_iter, tol, verbosity))
                .ok()
        });

        // Next try to initialize with an ideal gas assumption
        vle = vle.or_else(|| {
            Self::init_pure_ideal_gas(eos, temperature)
                .and_then(|vle| vle.iterate_pure_t(max_iter, tol, verbosity))
                .ok()
        });

        // Finally use the spinodal to initialize the calculation
        vle.map_or_else(
            || {
                Self::init_pure_spinodal(eos, temperature)
                    .and_then(|vle| vle.iterate_pure_t(max_iter, tol, verbosity))
            },
            Ok,
        )
    }

    fn iterate_pure_t(self, max_iter: usize, tol: f64, verbosity: Verbosity) -> EosResult<Self>
    where
        QuantityScalar<U>: std::fmt::Display + std::fmt::LowerExp,
    {
        let mut p_old = self.vapor().pressure(Contributions::Total);
        let [mut vapor, mut liquid] = self.0;

        log_iter!(verbosity,
            " iter |     residual      |     pressure     |    liquid density    |    vapor density     | Newton steps"
        );
        log_iter!(verbosity, "{:-<106}", "");
        log_iter!(
            verbosity,
            " {:4} |                   | {:12.8} | {:12.8} | {:12.8} |",
            0,
            p_old,
            liquid.density,
            vapor.density
        );

        for i in 1..=max_iter {
            // calculate the pressures and derivatives
            let (p_l, p_rho_l) = liquid.p_dpdrho();
            let (p_v, p_rho_v) = vapor.p_dpdrho();
            // calculate the molar Helmholtz energies (already cached)
            let a_l = liquid.molar_helmholtz_energy(Contributions::Total);
            let a_v = vapor.molar_helmholtz_energy(Contributions::Total);

            // Estimate the new pressure
            let delta_v = 1.0 / vapor.density - 1.0 / liquid.density;
            let delta_a = a_v - a_l;
            let mut p_new = -delta_a / delta_v;

            // If the pressure becomes negative, assume the gas phase is ideal. The
            // resulting pressure is always positive.
            if p_new.is_sign_negative() {
                let mu_v = vapor.chemical_potential(Contributions::Total).get(0);
                p_new = p_v
                    * (a_l - mu_v)
                        .to_reduced(vapor.temperature * U::gas_constant())?
                        .exp();
            }

            // Improve the estimate by exploiting the almost ideal behavior of the gas phase
            let kt = U::gas_constant() * vapor.temperature;
            let mut newton_iter = 0;
            let newton_tol = p_old * delta_v * tol;
            for _ in 0..20 {
                let p_frac = p_new.to_reduced(p_old)?;
                let f = p_new * delta_v + delta_a + (p_frac.ln() + 1.0 - p_frac) * kt;
                let df_dp = delta_v + (1.0 / p_new - 1.0 / p_old) * kt;
                p_new -= f / df_dp;
                newton_iter += 1;
                if f.abs() < newton_tol {
                    break;
                }
            }

            // Emergency brake if the implementation of the EOS is not safe.
            if p_new.is_nan() {
                return Err(EosError::IterationFailed("pure_t".to_owned()));
            }

            // Calculate Newton steps for the densities and update state.
            let rho_l = liquid.density + (p_new - p_l) / p_rho_l;
            let rho_v = vapor.density + (p_new - p_v) / p_rho_v;
            liquid = State::new_pure(&liquid.eos, liquid.temperature, rho_l)?;
            vapor = State::new_pure(&vapor.eos, vapor.temperature, rho_v)?;
            if Self::is_trivial_solution(&vapor, &liquid) {
                return Err(EosError::TrivialSolution);
            }

            // Check for convergence
            let res = (p_new - p_old).abs();
            log_iter!(
                verbosity,
                " {:4} | {:14.8e} | {:12.8} | {:12.8} | {:12.8} | {}",
                i,
                res,
                p_new,
                liquid.density,
                vapor.density,
                newton_iter
            );
            if res < p_old * tol {
                log_result!(
                    verbosity,
                    "PhaseEquilibrium::pure_t: calculation converged in {} step(s)\n",
                    i
                );
                return Ok(Self([vapor, liquid]));
            }
            p_old = p_new;
        }
        Err(EosError::NotConverged("pure_t".to_owned()))
    }

    /// Calculate a phase equilibrium for a pure component
    /// and given pressure.
    fn pure_p(
        eos: &Rc<E>,
        pressure: QuantityScalar<U>,
        initial_state: Option<&Self>,
        options: SolverOptions,
    ) -> EosResult<Self>
    where
        QuantityScalar<U>: std::fmt::Display + std::fmt::LowerExp,
    {
        let (max_iter, tol, verbosity) = options.unwrap_or(MAX_ITER_PURE, TOL_PURE);

        // Initialize the phase equilibrium
        let mut vle = match initial_state {
            Some(init) => init
                .clone()
                .update_pressure(init.vapor().temperature, pressure)?,
            None => PhaseEquilibrium::init_pure_p(eos, pressure)?,
        };

        log_iter!(
            verbosity,
            " iter |     residual     |   temperature   |    liquid density    |    vapor density     "
        );
        log_iter!(verbosity, "{:-<89}", "");
        log_iter!(
            verbosity,
            " {:4} |                  | {:13.8} | {:12.8} | {:12.8}",
            0,
            vle.vapor().temperature,
            vle.liquid().density,
            vle.vapor().density
        );
        for i in 1..=max_iter {
            // calculate the pressures and derivatives
            let (p_l, p_rho_l) = vle.liquid().p_dpdrho();
            let (p_v, p_rho_v) = vle.vapor().p_dpdrho();
            let p_t_l = vle.liquid().dp_dt(Contributions::Total);
            let p_t_v = vle.vapor().dp_dt(Contributions::Total);

            // calculate the molar entropies (already cached)
            let s_l = vle.liquid().molar_entropy(Contributions::Total);
            let s_v = vle.vapor().molar_entropy(Contributions::Total);

            // calculate the molar Helmholtz energies (already cached)
            let a_l = vle.liquid().molar_helmholtz_energy(Contributions::Total);
            let a_v = vle.vapor().molar_helmholtz_energy(Contributions::Total);

            // calculate the molar volumes
            let v_l = 1.0 / vle.liquid().density;
            let v_v = 1.0 / vle.vapor().density;

            // estimate the temperature steps
            let delta_t = (pressure * (v_v - v_l) + (a_v - a_l)) / (s_v - s_l);
            let t_new = vle.vapor().temperature + delta_t;

            // calculate Newton steps for the densities and update state.
            let rho_l = vle.liquid().density + (pressure - p_l - p_t_l * delta_t) / p_rho_l;
            let rho_v = vle.vapor().density + (pressure - p_v - p_t_v * delta_t) / p_rho_v;

            if rho_l.is_sign_negative()
                || rho_v.is_sign_negative()
                || delta_t.abs() > U::reference_temperature()
            {
                // if densities are negative or the temperature step is large use density iteration instead
                vle = vle
                    .update_pressure(t_new, pressure)?
                    .check_trivial_solution()?;
            } else {
                // update state
                vle = Self([
                    State::new_pure(eos, t_new, rho_v)?,
                    State::new_pure(eos, t_new, rho_l)?,
                ]);
            }

            // check for convergence
            let res = delta_t.abs();
            log_iter!(
                verbosity,
                " {:4} | {:14.8e} | {:13.8} | {:12.8} | {:12.8}",
                i,
                res,
                vle.vapor().temperature,
                vle.liquid().density,
                vle.vapor().density
            );
            if res < vle.vapor().temperature * tol {
                log_result!(
                    verbosity,
                    "PhaseEquilibrium::pure_p: calculation converged in {} step(s)\n",
                    i
                );
                return Ok(vle);
            }
        }
        Err(EosError::NotConverged("pure_p".to_owned()))
    }

    fn init_pure_state(initial_state: &Self, temperature: QuantityScalar<U>) -> EosResult<Self> {
        let vapor = initial_state.vapor().update_temperature(temperature)?;
        let liquid = initial_state.liquid().update_temperature(temperature)?;
        Ok(Self([vapor, liquid]))
    }

    fn init_pure_ideal_gas(eos: &Rc<E>, temperature: QuantityScalar<U>) -> EosResult<Self> {
        let m = arr1(&[1.0]) * U::reference_moles();
        let density = 0.75 * eos.max_density(None)?;
        let liquid = State::new_nvt(eos, temperature, U::reference_moles() / density, &m)?;
        let z = liquid.compressibility(Contributions::Total);
        let mu = liquid.chemical_potential(Contributions::ResidualNvt);
        let p = temperature
            * density
            * U::gas_constant()
            * (mu.get(0).to_reduced(U::gas_constant() * temperature)? - z).exp();
        PhaseEquilibrium::new_npt(eos, temperature, p, &m, &m)?.check_trivial_solution()
    }

    fn init_pure_spinodal(eos: &Rc<E>, temperature: QuantityScalar<U>) -> EosResult<Self> {
        let m = arr1(&[1.0]) * U::reference_moles();
        let spinodal = Self::spinodal(eos, temperature, &m)?;
        let pv = spinodal.vapor().pressure(Contributions::Total);
        let pl = spinodal.liquid().pressure(Contributions::Total);
        let p = 0.5 * ((0.0 * U::reference_pressure()).max(pl)? + pv);
        PhaseEquilibrium::new_npt(eos, temperature, p, &m, &m)
    }

    fn spinodal(
        eos: &Rc<E>,
        temperature: QuantityScalar<U>,
        moles: &QuantityArray1<U>,
    ) -> EosResult<Self> {
        let max_density = eos.max_density(Some(moles))?;
        let sp = pressure_spinodal(eos, temperature, max_density * 1e-5, moles)?;
        let vapor = State::new_nvt(eos, temperature, moles.get(0) / sp.rho, moles)?;
        let sp = pressure_spinodal(eos, temperature, max_density, moles)?;
        let liquid = State::new_nvt(eos, temperature, moles.get(0) / sp.rho, moles)?;
        Ok(PhaseEquilibrium([vapor, liquid]))
    }

    /// Initialize a new VLE for a pure substance for a given pressure.
    fn init_pure_p(eos: &Rc<E>, pressure: QuantityScalar<U>) -> EosResult<Self>
    where
        QuantityScalar<U>: std::fmt::Display,
    {
        let trial_temperatures = [
            300.0 * U::reference_temperature(),
            500.0 * U::reference_temperature(),
            200.0 * U::reference_temperature(),
        ];
        let m = arr1(&[1.0]) * U::reference_moles();
        let mut vle = None;
        let mut t0 = U::reference_temperature();
        for t in trial_temperatures.iter() {
            t0 = *t;
            let _vle = PhaseEquilibrium::new_npt(eos, *t, pressure, &m, &m)?;
            if !Self::is_trivial_solution(_vle.vapor(), _vle.liquid()) {
                return Ok(_vle);
            }
            vle = Some(_vle);
        }

        let cp = State::critical_point(eos, None, None, SolverOptions::default())?;
        if pressure > cp.pressure(Contributions::Total) {
            return Err(EosError::SuperCritical);
        };
        if let Some(mut e) = vle {
            if e.vapor().density < cp.density {
                for _ in 0..8 {
                    t0 = t0 * SCALE_T_NEW;
                    e.0[1] = State::new_npt(eos, t0, pressure, &m, DensityInitialization::Liquid)?;
                    if e.liquid().density > cp.density {
                        break;
                    }
                }
            } else {
                for _ in 0..8 {
                    t0 = t0 / SCALE_T_NEW;
                    e.0[0] = State::new_npt(eos, t0, pressure, &m, DensityInitialization::Vapor)?;
                    if e.vapor().density < cp.density {
                        break;
                    }
                }
            }

            for _ in 0..20 {
                t0 = (e.vapor().enthalpy(Contributions::Total)
                    - e.liquid().enthalpy(Contributions::Total))
                    / (e.vapor().entropy(Contributions::Total)
                        - e.liquid().entropy(Contributions::Total));
                let trial_state =
                    State::new_npt(eos, t0, pressure, &m, DensityInitialization::Vapor)?;
                if trial_state.density < cp.density {
                    e.0[0] = trial_state;
                }
                let trial_state =
                    State::new_npt(eos, t0, pressure, &m, DensityInitialization::Liquid)?;
                if trial_state.density > cp.density {
                    e.0[1] = trial_state;
                }
                if e.liquid().temperature == e.vapor().temperature {
                    return Ok(e);
                }
            }
            Err(EosError::IterationFailed(
                "new_init_p: could not find proper initial state".to_owned(),
            ))
        } else {
            unreachable!()
        }
    }
}

impl<U: EosUnit, E: EquationOfState> PhaseEquilibrium<U, E, 2> {
    /// Calculate the pure component vapor pressures of all
    /// components in the system for the given temperature.
    pub fn vapor_pressure(
        eos: &Rc<E>,
        temperature: QuantityScalar<U>,
    ) -> Vec<Option<QuantityScalar<U>>>
    where
        QuantityScalar<U>: std::fmt::Display + std::fmt::LowerExp,
    {
        (0..eos.components())
            .map(|i| {
                let pure_eos = Rc::new(eos.subset(&[i]));
                PhaseEquilibrium::pure_t(&pure_eos, temperature, None, SolverOptions::default())
                    .map(|vle| vle.vapor().pressure(Contributions::Total))
                    .ok()
            })
            .collect()
    }

    /// Calculate the pure component boiling temperatures of all
    /// components in the system for the given pressure.
    pub fn boiling_temperature(
        eos: &Rc<E>,
        pressure: QuantityScalar<U>,
    ) -> Vec<Option<QuantityScalar<U>>>
    where
        QuantityScalar<U>: std::fmt::Display + std::fmt::LowerExp,
    {
        (0..eos.components())
            .map(|i| {
                let pure_eos = Rc::new(eos.subset(&[i]));
                PhaseEquilibrium::pure_p(&pure_eos, pressure, None, SolverOptions::default())
                    .map(|vle| vle.vapor().temperature)
                    .ok()
            })
            .collect()
    }

    /// Calculate the pure component phase equilibria of all
    /// components in the system.
    pub fn vle_pure_comps(
        eos: &Rc<E>,
        temperature_or_pressure: QuantityScalar<U>,
    ) -> Vec<Option<PhaseEquilibrium<U, E, 2>>>
    where
        QuantityScalar<U>: std::fmt::Display + std::fmt::LowerExp,
    {
        (0..eos.components())
            .map(|i| {
                let pure_eos = Rc::new(eos.subset(&[i]));
                PhaseEquilibrium::pure(
                    &pure_eos,
                    temperature_or_pressure,
                    None,
                    SolverOptions::default(),
                )
                .ok()
                .map(|vle_pure| {
                    let mut moles_vapor = Array1::zeros(eos.components()) * U::reference_moles();
                    let mut moles_liquid = moles_vapor.clone();
                    moles_vapor
                        .try_set(i, vle_pure.vapor().total_moles)
                        .unwrap();
                    moles_liquid
                        .try_set(i, vle_pure.liquid().total_moles)
                        .unwrap();
                    let vapor = State::new_nvt(
                        eos,
                        vle_pure.vapor().temperature,
                        vle_pure.vapor().volume,
                        &moles_vapor,
                    )
                    .unwrap();
                    let liquid = State::new_nvt(
                        eos,
                        vle_pure.liquid().temperature,
                        vle_pure.liquid().volume,
                        &moles_liquid,
                    )
                    .unwrap();
                    PhaseEquilibrium::from_states(vapor, liquid)
                })
            })
            .collect()
    }
}