1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
use super::{PhaseEquilibrium, SolverOptions, Verbosity};
use crate::equation_of_state::EquationOfState;
use crate::errors::{EosError, EosResult};
use crate::state::{Contributions, DensityInitialization, State};
use crate::EosUnit;
use ndarray::*;
use num_dual::linalg::norm;
use quantity::{QuantityArray1, QuantityScalar};
use std::rc::Rc;

const MAX_ITER_TP: usize = 400;
const TOL_TP: f64 = 1e-8;

/// # Flash calculations
impl<U: EosUnit, E: EquationOfState> PhaseEquilibrium<U, E, 2> {
    /// Perform a Tp-flash calculation. If no initial values are
    /// given, the solution is initialized using a stability analysis.
    ///
    /// The algorithm can be use to calculate phase equilibria of systems
    /// containing non-volatile components (e.g. ions).
    pub fn tp_flash(
        eos: &Rc<E>,
        temperature: QuantityScalar<U>,
        pressure: QuantityScalar<U>,
        feed: &QuantityArray1<U>,
        initial_state: Option<&PhaseEquilibrium<U, E, 2>>,
        options: SolverOptions,
        non_volatile_components: Option<Vec<usize>>,
    ) -> EosResult<Self> {
        State::new_npt(
            eos,
            temperature,
            pressure,
            feed,
            DensityInitialization::None,
        )?
        .tp_flash(initial_state, options, non_volatile_components)
    }
}

/// # Flash calculations
impl<U: EosUnit, E: EquationOfState> State<U, E> {
    /// Perform a Tp-flash calculation using the [State] as feed.
    /// If no initial values are given, the solution is initialized
    /// using a stability analysis.
    ///
    /// The algorithm can be use to calculate phase equilibria of systems
    /// containing non-volatile components (e.g. ions).
    pub fn tp_flash(
        &self,
        initial_state: Option<&PhaseEquilibrium<U, E, 2>>,
        options: SolverOptions,
        non_volatile_components: Option<Vec<usize>>,
    ) -> EosResult<PhaseEquilibrium<U, E, 2>> {
        // set options
        let (max_iter, tol, verbosity) = options.unwrap_or(MAX_ITER_TP, TOL_TP);

        // initialization
        let mut new_vle_state = match initial_state {
            Some(init) => init
                .clone()
                .update_pressure(self.temperature, self.pressure(Contributions::Total))?,
            None => PhaseEquilibrium::vle_init_stability(self)?,
        };

        log_iter!(
            verbosity,
            " iter |    residual    |  phase I mole fractions  |  phase II mole fractions  "
        );
        log_iter!(verbosity, "{:-<77}", "");
        log_iter!(
            verbosity,
            " {:4} |                | {:10.8} | {:10.8}",
            0,
            new_vle_state.vapor().molefracs,
            new_vle_state.liquid().molefracs,
        );

        let mut iter = 0;
        if non_volatile_components.is_none() {
            // 3 steps of successive substitution
            new_vle_state.successive_substitution(
                self,
                3,
                &mut iter,
                &mut None,
                tol,
                verbosity,
                &non_volatile_components,
            )?;

            // check convergence
            let beta = new_vle_state.vapor_phase_fraction();
            let tpd = [
                self.tangent_plane_distance(new_vle_state.vapor()),
                self.tangent_plane_distance(new_vle_state.liquid()),
            ];
            let dg = (1.0 - beta) * tpd[1] + beta * tpd[0];

            // fix if only tpd[1] is positive
            if tpd[0] < 0.0 && dg >= 0.0 {
                let mut k = (self.ln_phi() - new_vle_state.vapor().ln_phi()).mapv(f64::exp);
                // Set k = 0 for non-volatile components
                if let Some(nvc) = non_volatile_components.as_ref() {
                    nvc.iter().for_each(|&c| k[c] = 0.0);
                }
                new_vle_state.update_states(self, &k)?;
                new_vle_state.successive_substitution(
                    self,
                    1,
                    &mut iter,
                    &mut None,
                    tol,
                    verbosity,
                    &non_volatile_components,
                )?;
            }

            // fix if only tpd[0] is positive
            if tpd[1] < 0.0 && dg >= 0.0 {
                let mut k = (new_vle_state.liquid().ln_phi() - self.ln_phi()).mapv(f64::exp);
                // Set k = 0 for non-volatile components
                if let Some(nvc) = non_volatile_components.as_ref() {
                    nvc.iter().for_each(|&c| k[c] = 0.0);
                }
                new_vle_state.update_states(self, &k)?;
                new_vle_state.successive_substitution(
                    self,
                    1,
                    &mut iter,
                    &mut None,
                    tol,
                    verbosity,
                    &non_volatile_components,
                )?;
            }
        }

        //continue with accelerated successive subsitution
        new_vle_state.accelerated_successive_substitution(
            self,
            &mut iter,
            max_iter,
            tol,
            verbosity,
            &non_volatile_components,
        )?;

        Ok(new_vle_state)
    }

    fn tangent_plane_distance(&self, trial_state: &State<U, E>) -> f64 {
        let ln_phi_z = self.ln_phi();
        let ln_phi_w = trial_state.ln_phi();
        let z = &self.molefracs;
        let w = &trial_state.molefracs;
        (w * &(w.mapv(f64::ln) + ln_phi_w - z.mapv(f64::ln) - ln_phi_z)).sum()
    }
}

impl<U: EosUnit, E: EquationOfState> PhaseEquilibrium<U, E, 2> {
    fn accelerated_successive_substitution(
        &mut self,
        feed_state: &State<U, E>,
        iter: &mut usize,
        max_iter: usize,
        tol: f64,
        verbosity: Verbosity,
        non_volatile_components: &Option<Vec<usize>>,
    ) -> EosResult<()> {
        for _ in 0..max_iter {
            // do 5 successive substitution steps and check for convergence
            let mut k_vec = Array::zeros((4, self.vapor().eos.components()));
            if self.successive_substitution(
                feed_state,
                5,
                iter,
                &mut Some(&mut k_vec),
                tol,
                verbosity,
                non_volatile_components,
            )? {
                log_result!(
                    verbosity,
                    "Tp flash: calculation converged in {} step(s)\n",
                    iter
                );
                return Ok(());
            }

            // calculate total Gibbs energy before the extrapolation
            let gibbs = self.total_gibbs_energy();

            // extrapolate K values
            let delta_vec = &k_vec.slice(s![1.., ..]) - &k_vec.slice(s![..3, ..]);
            let delta = Array::from_shape_fn((3, 3), |(i, j)| {
                (&delta_vec.index_axis(Axis(0), i) * &delta_vec.index_axis(Axis(0), j)).sum()
            });
            let d = delta[(0, 1)] * delta[(0, 1)] - delta[(0, 0)] * delta[(1, 1)];
            let a = (delta[(0, 2)] * delta[(0, 1)] - delta[(1, 2)] * delta[(0, 0)]) / d;
            let b = (delta[(1, 2)] * delta[(0, 1)] - delta[(0, 2)] * delta[(1, 1)]) / d;

            let mut k = (&k_vec.index_axis(Axis(0), 3)
                + &((b * &delta_vec.index_axis(Axis(0), 1)
                    + (a + b) * &delta_vec.index_axis(Axis(0), 2))
                    / (1.0 - a - b)))
                .mapv(f64::exp);

            // Set k = 0 for non-volatile components
            if let Some(nvc) = non_volatile_components.as_ref() {
                nvc.iter().for_each(|&c| k[c] = 0.0);
            }
            if !k.iter().all(|i| i.is_finite()) {
                continue;
            }

            // calculate new states
            let mut trial_vle_state = self.clone();
            trial_vle_state.update_states(feed_state, &k)?;
            if trial_vle_state.total_gibbs_energy() < gibbs {
                *self = trial_vle_state;
            }
        }
        Err(EosError::NotConverged("TP flash".to_owned()))
    }

    fn successive_substitution(
        &mut self,
        feed_state: &State<U, E>,
        iterations: usize,
        iter: &mut usize,
        k_vec: &mut Option<&mut Array2<f64>>,
        abs_tol: f64,
        verbosity: Verbosity,
        non_volatile_components: &Option<Vec<usize>>,
    ) -> EosResult<bool> {
        for i in 0..iterations {
            let ln_phi_v = self.vapor().ln_phi();
            let ln_phi_l = self.liquid().ln_phi();
            let mut k = (&ln_phi_l - &ln_phi_v).mapv(f64::exp);

            // Set k = 0 for non-volatile components
            if let Some(nvc) = non_volatile_components.as_ref() {
                nvc.iter().for_each(|&c| k[c] = 0.0);
            }

            // check for convergence
            *iter += 1;
            let mut res_vec = ln_phi_l - ln_phi_v
                + (&self.liquid().molefracs / &self.vapor().molefracs).map(|&i| {
                    if i > 0.0 {
                        i.ln()
                    } else {
                        0.0
                    }
                });

            // Set residuum to 0 for non-volatile components
            if let Some(nvc) = non_volatile_components.as_ref() {
                nvc.iter().for_each(|&c| res_vec[c] = 0.0);
            }
            let res = norm(&res_vec);
            log_iter!(
                verbosity,
                " {:4} | {:14.8e} | {:.8} | {:.8}",
                iter,
                res,
                self.vapor().molefracs,
                self.liquid().molefracs,
            );
            if res < abs_tol {
                return Ok(true);
            }

            self.update_states(feed_state, &k)?;
            if let Some(k_vec) = k_vec {
                if i >= iterations - 3 {
                    k_vec
                        .index_axis_mut(Axis(0), i + 3 - iterations)
                        .assign(&k.map(|ki| if *ki > 0.0 { ki.ln() } else { 0.0 }));
                }
            }
        }
        Ok(false)
    }

    fn update_states(&mut self, feed_state: &State<U, E>, k: &Array1<f64>) -> EosResult<()> {
        // calculate vapor phase fraction using Rachford-Rice algorithm
        let mut beta = self.vapor_phase_fraction();
        beta = rachford_rice(&feed_state.molefracs, k, Some(beta))?;

        // update VLE
        let v = beta * k / (1.0 - beta + beta * k) * feed_state.moles.clone();
        let l = (1.0 - beta) / (1.0 - beta + beta * k) * feed_state.moles.clone();
        self.update_moles(feed_state.pressure(Contributions::Total), [&v, &l])?;
        Ok(())
    }

    fn vle_init_stability(feed_state: &State<U, E>) -> EosResult<Self> {
        let mut stable_states = feed_state.stability_analysis(SolverOptions::default())?;
        let state1 = stable_states.pop();
        let state2 = stable_states.pop();
        match (state1, state2) {
            (Some(s1), Some(s2)) => Ok(Self::from_states(s1, s2)),
            (Some(s1), None) => Ok(Self::from_states(s1, feed_state.clone())),
            _ => Err(EosError::NoPhaseSplit),
        }
    }
}

fn rachford_rice(feed: &Array1<f64>, k: &Array1<f64>, beta_in: Option<f64>) -> EosResult<f64> {
    const MAX_ITER: usize = 10;
    const ABS_TOL: f64 = 1e-6;

    // check if solution exists
    let (mut beta_min, mut beta_max) =
        if (feed * k).sum() > 1.0 && (feed / k).iter().filter(|x| !x.is_nan()).sum::<f64>() > 1.0 {
            (0.0, 1.0)
        } else {
            return Err(EosError::IterationFailed(String::from("rachford_rice")));
        };

    // look for tighter bounds
    for (&k, &f) in k.iter().zip(feed.iter()) {
        if k > 1.0 {
            let b = (k * f - 1.0) / (k - 1.0);
            if b > beta_min {
                beta_min = b;
            }
        }
        if k < 1.0 {
            let b = (1.0 - f) / (1.0 - k);
            if b < beta_max {
                beta_max = b;
            }
        }
    }

    // initialize
    let mut beta = 0.5 * (beta_min + beta_max);
    if let Some(b) = beta_in {
        if b > beta_min && b < beta_max {
            beta = b;
        }
    }
    let g = (feed * &(k - 1.0) / (1.0 - beta + beta * k)).sum();
    if g > 0.0 {
        beta_min = beta
    } else {
        beta_max = beta
    }

    // iterate
    for _ in 0..MAX_ITER {
        let frac = (k - 1.0) / (1.0 - beta + beta * k);
        let g = (feed * &frac).sum();
        let dg = -(feed * &frac * &frac).sum();
        if g > 0.0 {
            beta_min = beta;
        } else {
            beta_max = beta;
        }

        let dbeta = g / dg;
        beta -= dbeta;

        if beta < beta_min || beta > beta_max {
            beta = 0.5 * (beta_min + beta_max);
        }
        if dbeta.abs() < ABS_TOL {
            return Ok(beta);
        }
    }

    Ok(beta)
}