1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
use super::{DensityInitialization, State};
use crate::equation_of_state::EquationOfState;
use crate::errors::EosResult;
use crate::EosUnit;
use ndarray::Array1;
use quantity::{QuantityArray1, QuantityScalar};
use std::rc::Rc;

/// A simple tool to construct [State]s with arbitrary input parameters.
///
/// # Examples
/// ```
/// # use feos_core::{EosResult, StateBuilder};
/// # use feos_core::cubic::{PengRobinson, PengRobinsonParameters};
/// # use quantity::si::*;
/// # use std::rc::Rc;
/// # use ndarray::arr1;
/// # use approx::assert_relative_eq;
/// # fn main() -> EosResult<()> {
/// // Create a state for given T,V,N
/// let eos = Rc::new(PengRobinson::new(Rc::new(PengRobinsonParameters::new_simple(&[369.8], &[41.9 * 1e5], &[0.15], &[15.0]).unwrap())));
/// let state = StateBuilder::new(&eos)
///                 .temperature(300.0 * KELVIN)
///                 .volume(12.5 * METER.powi(3))
///                 .moles(&(arr1(&[2.5]) * MOL))
///                 .build()?;
/// assert_eq!(state.density, 0.2 * MOL / METER.powi(3));
///
/// // For a pure component, the composition does not need to be specified.
/// let eos = Rc::new(PengRobinson::new(Rc::new(PengRobinsonParameters::new_simple(&[369.8], &[41.9 * 1e5], &[0.15], &[15.0]).unwrap())));
/// let state = StateBuilder::new(&eos)
///                 .temperature(300.0 * KELVIN)
///                 .volume(12.5 * METER.powi(3))
///                 .total_moles(2.5 * MOL)
///                 .build()?;
/// assert_eq!(state.density, 0.2 * MOL / METER.powi(3));
///
/// // The state can be constructed without providing any extensive property.
/// let eos = Rc::new(PengRobinson::new(
///     Rc::new(PengRobinsonParameters::new_simple(
///         &[369.8, 305.4],
///         &[41.9 * 1e5, 48.2 * 1e5],
///         &[0.15, 0.10],
///         &[15.0, 30.0]
///     ).unwrap())
/// ));
/// let state = StateBuilder::new(&eos)
///                 .temperature(300.0 * KELVIN)
///                 .partial_density(&(arr1(&[0.2, 0.6]) * MOL / METER.powi(3)))
///                 .build()?;
/// assert_relative_eq!(state.molefracs, arr1(&[0.25, 0.75]));
/// assert_relative_eq!(state.density, 0.8 * MOL / METER.powi(3));
/// # Ok(())
/// # }
/// ```
pub struct StateBuilder<'a, U: EosUnit, E: EquationOfState> {
    eos: Rc<E>,
    temperature: Option<QuantityScalar<U>>,
    volume: Option<QuantityScalar<U>>,
    density: Option<QuantityScalar<U>>,
    partial_density: Option<&'a QuantityArray1<U>>,
    total_moles: Option<QuantityScalar<U>>,
    moles: Option<&'a QuantityArray1<U>>,
    molefracs: Option<&'a Array1<f64>>,
    pressure: Option<QuantityScalar<U>>,
    enthalpy: Option<QuantityScalar<U>>,
    entropy: Option<QuantityScalar<U>>,
    internal_energy: Option<QuantityScalar<U>>,
    density_initialization: DensityInitialization<U>,
    initial_temperature: Option<QuantityScalar<U>>,
}

impl<'a, U: EosUnit, E: EquationOfState> StateBuilder<'a, U, E> {
    /// Create a new `StateBuilder` for the given equation of state.
    pub fn new(eos: &Rc<E>) -> Self {
        StateBuilder {
            eos: eos.clone(),
            temperature: None,
            volume: None,
            density: None,
            partial_density: None,
            total_moles: None,
            moles: None,
            molefracs: None,
            pressure: None,
            enthalpy: None,
            entropy: None,
            internal_energy: None,
            density_initialization: DensityInitialization::None,
            initial_temperature: None,
        }
    }

    /// Provide the temperature for the new state.
    pub fn temperature(mut self, temperature: QuantityScalar<U>) -> Self {
        self.temperature = Some(temperature);
        self
    }

    /// Provide the volume for the new state.
    pub fn volume(mut self, volume: QuantityScalar<U>) -> Self {
        self.volume = Some(volume);
        self
    }

    /// Provide the density for the new state.
    pub fn density(mut self, density: QuantityScalar<U>) -> Self {
        self.density = Some(density);
        self
    }

    /// Provide partial densities for the new state.
    pub fn partial_density(mut self, partial_density: &'a QuantityArray1<U>) -> Self {
        self.partial_density = Some(partial_density);
        self
    }

    /// Provide the total moles for the new state.
    pub fn total_moles(mut self, total_moles: QuantityScalar<U>) -> Self {
        self.total_moles = Some(total_moles);
        self
    }

    /// Provide the moles for the new state.
    pub fn moles(mut self, moles: &'a QuantityArray1<U>) -> Self {
        self.moles = Some(moles);
        self
    }

    /// Provide the molefracs for the new state.
    pub fn molefracs(mut self, molefracs: &'a Array1<f64>) -> Self {
        self.molefracs = Some(molefracs);
        self
    }

    /// Provide the pressure for the new state.
    pub fn pressure(mut self, pressure: QuantityScalar<U>) -> Self {
        self.pressure = Some(pressure);
        self
    }

    /// Provide the enthalpy for the new state.
    pub fn enthalpy(mut self, enthalpy: QuantityScalar<U>) -> Self {
        self.enthalpy = Some(enthalpy);
        self
    }

    /// Provide the entropy for the new state.
    pub fn entropy(mut self, entropy: QuantityScalar<U>) -> Self {
        self.entropy = Some(entropy);
        self
    }

    /// Provide the internal energy for the new state.
    pub fn internal_energy(mut self, internal_energy: QuantityScalar<U>) -> Self {
        self.internal_energy = Some(internal_energy);
        self
    }

    /// Specify a vapor state.
    pub fn vapor(mut self) -> Self {
        self.density_initialization = DensityInitialization::Vapor;
        self
    }

    /// Specify a liquid state.
    pub fn liquid(mut self) -> Self {
        self.density_initialization = DensityInitialization::Liquid;
        self
    }

    /// Provide an initial density used in density iterations.
    pub fn initial_density(mut self, initial_density: QuantityScalar<U>) -> Self {
        self.density_initialization = DensityInitialization::InitialDensity(initial_density);
        self
    }

    /// Provide an initial temperature used in the Newton solver.
    pub fn initial_temperature(mut self, initial_temperature: QuantityScalar<U>) -> Self {
        self.initial_temperature = Some(initial_temperature);
        self
    }

    /// Try to build the state with the given inputs.
    pub fn build(self) -> EosResult<State<U, E>> {
        State::new(
            &self.eos,
            self.temperature,
            self.volume,
            self.density,
            self.partial_density,
            self.total_moles,
            self.moles,
            self.molefracs,
            self.pressure,
            self.enthalpy,
            self.entropy,
            self.internal_energy,
            self.density_initialization,
            self.initial_temperature,
        )
    }
}

impl<'a, U: EosUnit, E: EquationOfState> Clone for StateBuilder<'a, U, E> {
    fn clone(&self) -> Self {
        Self {
            eos: self.eos.clone(),
            temperature: self.temperature,
            volume: self.volume,
            density: self.density,
            partial_density: self.partial_density,
            total_moles: self.total_moles,
            moles: self.moles,
            molefracs: self.molefracs,
            pressure: self.pressure,
            enthalpy: self.enthalpy,
            entropy: self.entropy,
            internal_energy: self.internal_energy,
            density_initialization: self.density_initialization,
            initial_temperature: self.initial_temperature,
        }
    }
}