feos_ad/core/
total.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
use super::{ParametersAD, ResidualHelmholtzEnergy};
use nalgebra::SVector;
use num_dual::{first_derivative, gradient, Dual, DualNum, DualVec};

/// Implementation of an ideal gas Helmholtz energy contribution.
pub trait IdealGasAD: ParametersAD {
    /// The name of the model.
    const IDEAL_GAS: &str;

    /// The logarithmic cubed thermal de Broglie wavelength for the given temperature.
    fn ln_lambda3_dual<D: DualNum<f64> + Copy>(
        parameters: &Self::Parameters<D>,
        temperature: D,
    ) -> D;
}

/// An equation of state consisting of a residual model and an ideal gas model.
pub struct EquationOfStateAD<I, R, const N: usize> {
    ideal_gas: [I; N],
    residual: R,
}

impl<I, R, const N: usize> EquationOfStateAD<I, R, N> {
    pub fn new(ideal_gas: [I; N], residual: R) -> Self {
        Self {
            ideal_gas,
            residual,
        }
    }
}

impl<I: ParametersAD, R: ParametersAD, const N: usize> ParametersAD for EquationOfStateAD<I, R, N> {
    type Parameters<D: DualNum<f64> + Copy> = ([I::Parameters<D>; N], R::Parameters<D>);

    fn params<D: DualNum<f64> + Copy>(&self) -> Self::Parameters<D> {
        (
            self.ideal_gas.each_ref().map(I::params),
            self.residual.params(),
        )
    }

    fn params_from_inner<D: DualNum<f64> + Copy, D2: DualNum<f64, Inner = D> + Copy>(
        (ideal_gas, residual): &([I::Parameters<D>; N], R::Parameters<D>),
    ) -> Self::Parameters<D2> {
        (
            ideal_gas.each_ref().map(|ig| I::params_from_inner(ig)),
            R::params_from_inner(residual),
        )
    }
}

impl<I: ParametersAD, R: ResidualHelmholtzEnergy<N>, const N: usize> ResidualHelmholtzEnergy<N>
    for EquationOfStateAD<I, R, N>
{
    const RESIDUAL: &str = R::RESIDUAL;

    fn compute_max_density(&self, molefracs: &SVector<f64, N>) -> f64 {
        self.residual.compute_max_density(molefracs)
    }

    fn residual_helmholtz_energy_density<D: DualNum<f64> + Copy>(
        (_, residual): &([I::Parameters<D>; N], R::Parameters<D>),
        temperature: D,
        partial_density: &SVector<D, N>,
    ) -> D {
        R::residual_helmholtz_energy_density(residual, temperature, partial_density)
    }
}

/// Methods of [EquationOfStateAD] extracted in a trait for genericness.
pub trait TotalHelmholtzEnergy<const N: usize>: ResidualHelmholtzEnergy<N> {
    const IDEAL_GAS: &str;

    fn ln_lambda3<D: DualNum<f64> + Copy>(
        parameters: &Self::Parameters<D>,
        temperature: D,
    ) -> SVector<D, N>;

    fn helmholtz_energy_density<D: DualNum<f64> + Copy>(
        parameters: &Self::Parameters<D>,
        temperature: D,
        partial_density: &SVector<D, N>,
    ) -> D {
        let ln_lambda_3 = Self::ln_lambda3(parameters, temperature);
        let ig = partial_density
            .component_mul(
                &(partial_density.map(|d| d.ln()) + ln_lambda_3 - SVector::from([D::from(1.0); N])),
            )
            .sum()
            * temperature;
        Self::residual_helmholtz_energy_density(parameters, temperature, partial_density) + ig
    }

    fn molar_helmholtz_energy<D: DualNum<f64> + Copy>(
        parameters: &Self::Parameters<D>,
        temperature: D,
        molar_volume: D,
        molefracs: &SVector<D, N>,
    ) -> D {
        let partial_density = molefracs / molar_volume;
        Self::helmholtz_energy_density(parameters, temperature, &partial_density) * molar_volume
    }

    fn chemical_potential<D: DualNum<f64> + Copy>(
        parameters: &Self::Parameters<D>,
        temperature: D,
        molar_volume: D,
        molefracs: &SVector<D, N>,
    ) -> SVector<D, N> {
        let params = Self::params_from_inner(parameters);
        let temperature = DualVec::from_re(temperature);
        let molar_volume = DualVec::from_re(molar_volume);
        let (_, mu) = gradient(
            |molefracs| {
                Self::molar_helmholtz_energy(&params, temperature, molar_volume, &molefracs)
            },
            *molefracs,
        );
        mu
    }

    fn molar_entropy<D: DualNum<f64> + Copy>(
        parameters: &Self::Parameters<D>,
        temperature: D,
        molar_volume: D,
        molefracs: &SVector<D, N>,
    ) -> D {
        let params = Self::params_from_inner(parameters);
        let molar_volume = Dual::from_re(molar_volume);
        let molefracs = molefracs.map(Dual::from_re);
        let (_, da_dt) = first_derivative(
            |temperature| {
                Self::molar_helmholtz_energy(&params, temperature, molar_volume, &molefracs)
            },
            temperature,
        );
        -da_dt
    }

    fn molar_enthalpy<D: DualNum<f64> + Copy>(
        parameters: &Self::Parameters<D>,
        temperature: D,
        molar_volume: D,
        molefracs: &SVector<D, N>,
    ) -> D {
        let params = Self::params_from_inner(parameters);
        let molefracs = molefracs.map(DualVec::from_re);
        let (a, da) = gradient(
            |x| {
                let [temperature, molar_volume] = x.data.0[0];
                Self::molar_helmholtz_energy(&params, temperature, molar_volume, &molefracs)
            },
            SVector::from([temperature, molar_volume]),
        );
        let [da_dt, da_dv] = da.data.0[0];
        a - temperature * da_dt - molar_volume * da_dv
    }

    fn pressure_entropy<D: DualNum<f64> + Copy>(
        parameters: &Self::Parameters<D>,
        temperature: D,
        molar_volume: D,
        molefracs: &SVector<D, N>,
    ) -> SVector<D, 2> {
        let params = Self::params_from_inner(parameters);
        let molefracs = molefracs.map(DualVec::from_re);
        gradient(
            |x| {
                let [molar_volume, temperature] = x.data.0[0];
                -Self::molar_helmholtz_energy(&params, temperature, molar_volume, &molefracs)
            },
            SVector::from([molar_volume, temperature]),
        )
        .1
    }

    fn pressure_enthalpy<D: DualNum<f64> + Copy>(
        parameters: &Self::Parameters<D>,
        temperature: D,
        molar_volume: D,
        molefracs: &SVector<D, N>,
    ) -> SVector<D, 2> {
        let params = Self::params_from_inner(parameters);
        let molefracs = molefracs.map(DualVec::from_re);
        let (a, da) = gradient(
            |x| {
                let [temperature, molar_volume] = x.data.0[0];
                Self::molar_helmholtz_energy(&params, temperature, molar_volume, &molefracs)
            },
            SVector::from([temperature, molar_volume]),
        );
        let [da_dt, da_dv] = da.data.0[0];
        let h = a - temperature * da_dt - molar_volume * da_dv;
        let p = -da_dv;
        SVector::from([p, h])
    }
}

impl<I: IdealGasAD, R: ResidualHelmholtzEnergy<N>, const N: usize> TotalHelmholtzEnergy<N>
    for EquationOfStateAD<I, R, N>
{
    const IDEAL_GAS: &str = I::IDEAL_GAS;

    fn ln_lambda3<D: DualNum<f64> + Copy>(
        (ideal_gas, _): &([I::Parameters<D>; N], R::Parameters<D>),
        temperature: D,
    ) -> SVector<D, N> {
        SVector::from(
            ideal_gas
                .each_ref()
                .map(|ig| I::ln_lambda3_dual(ig, temperature)),
        )
    }
}