feos_ad/core/
residual.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
use super::{FeOsWrapper, HelmholtzEnergyWrapper};
use nalgebra::{SMatrix, SVector};
use num_dual::{
    first_derivative, gradient, hessian, partial_hessian, second_derivative, Dual, Dual2, Dual2Vec,
    DualNum, DualVec, HyperDualVec,
};
use std::sync::Arc;

/// A model that can be evaluated with derivatives of its parameters.
pub trait ParametersAD: Send + Sync + Sized {
    /// The type of the structure that stores the parameters internally.
    type Parameters<D: DualNum<f64> + Copy>: Clone;

    /// Return the parameters in the given data type.
    fn params<D: DualNum<f64> + Copy>(&self) -> Self::Parameters<D>;

    /// Lift the parameters to the given type of dual number.
    fn params_from_inner<D: DualNum<f64> + Copy, D2: DualNum<f64, Inner = D> + Copy>(
        parameters: &Self::Parameters<D>,
    ) -> Self::Parameters<D2>;

    /// Wraps the model in the [HelmholtzEnergyWrapper] struct, so that it can be used
    /// as an argument to [StateAD](crate::StateAD) and [PhaseEquilibriumAD](crate::PhaseEquilibriumAD) constructors.
    fn wrap<const N: usize>(self) -> HelmholtzEnergyWrapper<Self, f64, N> {
        let parameters = self.params();
        HelmholtzEnergyWrapper {
            eos: Arc::new(FeOsWrapper(self)),
            parameters,
        }
    }
}

/// Implementation of a residual Helmholtz energy model.
pub trait ResidualHelmholtzEnergy<const N: usize>: ParametersAD {
    /// The name of the model.
    const RESIDUAL: &str;

    /// Return a density (in reduced units) that corresponds to a dense liquid phase.
    fn compute_max_density(&self, molefracs: &SVector<f64, N>) -> f64;

    fn residual_helmholtz_energy_density<D: DualNum<f64> + Copy>(
        parameters: &Self::Parameters<D>,
        temperature: D,
        partial_density: &SVector<D, N>,
    ) -> D;

    fn residual_molar_helmholtz_energy<D: DualNum<f64> + Copy>(
        parameters: &Self::Parameters<D>,
        temperature: D,
        molar_volume: D,
        molefracs: &SVector<D, N>,
    ) -> D {
        let partial_density = molefracs / molar_volume;
        Self::residual_helmholtz_energy_density(parameters, temperature, &partial_density)
            * molar_volume
    }

    fn residual_chemical_potential<D: DualNum<f64> + Copy>(
        parameters: &Self::Parameters<D>,
        temperature: D,
        molar_volume: D,
        molefracs: &SVector<D, N>,
    ) -> SVector<D, N> {
        let params = Self::params_from_inner(parameters);
        let temperature = DualVec::from_re(temperature);
        let molar_volume = DualVec::from_re(molar_volume);
        let (_, mu) = gradient(
            |molefracs| {
                Self::residual_molar_helmholtz_energy(
                    &params,
                    temperature,
                    molar_volume,
                    &molefracs,
                )
            },
            *molefracs,
        );
        mu
    }

    fn pressure<D: DualNum<f64> + Copy>(
        parameters: &Self::Parameters<D>,
        temperature: D,
        molar_volume: D,
        molefracs: &SVector<D, N>,
    ) -> D {
        let params = Self::params_from_inner(parameters);
        let t = Dual::from_re(temperature);
        let molefracs = molefracs.map(Dual::from_re);
        let (_, dadv) = first_derivative(
            |v| Self::residual_molar_helmholtz_energy(&params, t, v, &molefracs),
            molar_volume,
        );
        -dadv + temperature / molar_volume
    }

    fn residual_molar_entropy<D: DualNum<f64> + Copy>(
        parameters: &Self::Parameters<D>,
        temperature: D,
        molar_volume: D,
        molefracs: &SVector<D, N>,
    ) -> D {
        let params = Self::params_from_inner(parameters);
        let molar_volume = Dual::from_re(molar_volume);
        let molefracs = molefracs.map(Dual::from_re);
        let (_, da_dt) = first_derivative(
            |temperature| {
                Self::residual_molar_helmholtz_energy(
                    &params,
                    temperature,
                    molar_volume,
                    &molefracs,
                )
            },
            temperature,
        );
        -da_dt
    }

    fn residual_molar_enthalpy<D: DualNum<f64> + Copy>(
        parameters: &Self::Parameters<D>,
        temperature: D,
        molar_volume: D,
        molefracs: &SVector<D, N>,
    ) -> D {
        let params = Self::params_from_inner(parameters);
        let molefracs = molefracs.map(DualVec::from_re);
        let (a, da) = gradient(
            |x| {
                let [temperature, molar_volume] = x.data.0[0];
                Self::residual_molar_helmholtz_energy(
                    &params,
                    temperature,
                    molar_volume,
                    &molefracs,
                )
            },
            SVector::from([temperature, molar_volume]),
        );
        let [da_dt, da_dv] = da.data.0[0];
        a - temperature * da_dt - molar_volume * da_dv
    }

    fn dp_drho<D: DualNum<f64> + Copy>(
        parameters: &Self::Parameters<D>,
        temperature: D,
        molar_volume: D,
        molefracs: &SVector<D, N>,
    ) -> (D, D, D) {
        let params = Self::params_from_inner(parameters);
        let t = Dual2::from_re(temperature);
        let x = molefracs.map(Dual2::from_re);
        let (a, da, d2a) = second_derivative(
            |molar_volume| Self::residual_molar_helmholtz_energy(&params, t, molar_volume, &x),
            molar_volume,
        );
        let density = molar_volume.recip();
        (
            a * density,
            -da + temperature * density,
            molar_volume * molar_volume * d2a + temperature,
        )
    }

    /// calculates p, mu_res, dp_drho, dmu_drho
    fn dmu_drho<D: DualNum<f64> + Copy>(
        parameters: &Self::Parameters<D>,
        temperature: D,
        partial_density: &SVector<D, N>,
    ) -> (D, SVector<D, N>, SVector<D, N>, SMatrix<D, N, N>) {
        let params = Self::params_from_inner(parameters);
        let t = Dual2Vec::from_re(temperature);
        let (f_res, mu_res, dmu_res) = hessian(
            |rho| Self::residual_helmholtz_energy_density(&params, t, &rho),
            *partial_density,
        );
        let p = mu_res.dot(partial_density) - f_res + temperature * partial_density.sum();
        let dmu = dmu_res + SMatrix::from_diagonal(&partial_density.map(|d| temperature / d));
        let dp = dmu * partial_density;
        (p, mu_res, dp, dmu)
    }

    /// calculates p, mu_res, dp_dv, dmu_dv
    fn dmu_dv<D: DualNum<f64> + Copy>(
        parameters: &Self::Parameters<D>,
        temperature: D,
        molar_volume: D,
        molefracs: &SVector<D, N>,
    ) -> (D, SVector<D, N>, D, SVector<D, N>) {
        let params = Self::params_from_inner(parameters);
        let t = HyperDualVec::from_re(temperature);
        let (_, mu_res, a_res_v, mu_res_v) = partial_hessian(
            |x, v| Self::residual_molar_helmholtz_energy(&params, t, v[0], &x),
            *molefracs,
            SVector::from([molar_volume]),
        );
        let p = (-a_res_v)[0] + temperature / molar_volume;
        let mu_v = mu_res_v.map(|m| m - temperature / molar_volume);
        let p_v = mu_v.dot(molefracs) / molar_volume;
        (p, mu_res, p_v, mu_v)
    }
}