1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
use crate::{FenwickTree, FenwickTreeValue, TreeIndex};

pub struct FixedSizeFenwickTree<T: FenwickTreeValue> {
    data: Vec<T>,
}

impl<T: FenwickTreeValue> FixedSizeFenwickTree<T> {
    pub fn new(size: usize) -> Self {
        Self {
            data: vec![T::default(); size + 1],
        }
    }

    fn size(&self) -> usize {
        self.data.len() - 1
    }
}

impl<T: FenwickTreeValue> std::ops::Index<TreeIndex> for FixedSizeFenwickTree<T> {
    type Output = T;

    fn index(&self, index: TreeIndex) -> &Self::Output {
        &self.data[*index.to_internal()]
    }
}

impl<T: FenwickTreeValue> std::ops::IndexMut<TreeIndex> for FixedSizeFenwickTree<T> {
    fn index_mut(&mut self, index: TreeIndex) -> &mut Self::Output {
        &mut self.data[*index.to_internal()]
    }
}

impl<T: FenwickTreeValue> FenwickTree for FixedSizeFenwickTree<T> {
    type Value = T;

    fn query(&self, idx: &TreeIndex) -> Result<T, String> {
        // TODO: need to discuss
        let idx = idx.to_external()?;

        if *idx >= self.size() {
            return Err("Index is out of bounds.".to_string());
        }

        let mut res = T::default();
        for data_position in idx.lsb_descending() {
            let data_position = data_position.to_internal();
            res.store_value(&self[data_position]);
        }

        Ok(res)
    }

    fn update(&mut self, idx: &TreeIndex, value: Self::Value) -> Result<(), String> {
        // TODO: need to discuss
        let idx = idx.to_external()?;

        if *idx > self.data.len() {
            return Err("Index is out of bounds".to_string());
        }

        for data_position in idx.lsb_ascending(self.size()) {
            let data_position = data_position.to_internal();
            self[data_position].store_value(&value);
        }

        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use crate::fixed_size_tree::FixedSizeFenwickTree;
    use crate::FenwickTree;
    use rand::seq::SliceRandom;
    use rand::Rng;

    #[test]
    fn edge_case() {
        let mut tree = FixedSizeFenwickTree::<i32>::new(4);
        tree.update(&3.into(), 1).unwrap();
        assert_eq!(tree.query(&3.into()).unwrap(), 1);
    }

    #[test]
    fn simple_tree_generation_with_queries() {
        let mut tree = FixedSizeFenwickTree::<i32>::new(32);
        for i in 0..32 {
            if let Err(_) = tree.update(&i.into(), 1) {
                assert!(false)
            }
        }
        assert_eq!(tree.query(&4.into()).unwrap(), 5); // points at [0, 1, 2, 3, 4]
        assert_eq!(tree.query(&0.into()).unwrap(), 1);
        assert_eq!(tree.query(&31.into()).unwrap(), 32);
    }

    // TODO: #[should_panic]?
    #[test]
    fn tree_indexing_overflow() {
        let tree = FixedSizeFenwickTree::<i32>::new(0);

        match tree.query(&1.into()) {
            Ok(_) => assert!(false),
            Err(message) => assert_eq!(message, "Index is out of bounds."),
        }
    }

    #[test]
    fn update_existent_value() {
        let mut tree = FixedSizeFenwickTree::<i32>::new(32);
        for _i in 0..32 {
            if let Err(_) = tree.update(&0.into(), 1) {
                assert!(false)
            }
        }
        let res = tree.query(&1.into()).unwrap();
        assert_eq!(res, 32);
    }

    #[test]
    fn random_100_point_data() {
        let size = 100;
        let mut input = vec![];
        let mut rng = rand::thread_rng();

        for _i in 0..size {
            input.push((rng.gen::<f32>() * 100.0) as i32);
        }

        let mut tree = FixedSizeFenwickTree::<i32>::new(size);
        for i in 0..size {
            if let Err(_) = tree.update(&i.into(), *input.get(i).unwrap()) {
                assert!(false)
            }
        }

        let mut sum = 0;
        for i in 0..size {
            sum += *input.get(i).unwrap();

            if let Ok(res) = tree.query(&i.into()) {
                assert_eq!(res, sum);
            } else {
                assert!(false)
            }
        }
    }

    #[test]
    fn random_100_point_data_with_random_update_order() {
        let size = 100;
        let mut input = vec![];
        let mut rng = rand::thread_rng();

        for _i in 0..size {
            input.push((rng.gen::<f32>() * 100.0) as i32);
        }

        let mut tree = FixedSizeFenwickTree::<i32>::new(size);

        let mut random_indexes: Vec<usize> = (0..size).collect();
        random_indexes.shuffle(&mut rng);
        for i in random_indexes {
            if let Err(_) = tree.update(&i.into(), *input.get(i).unwrap()) {
                assert!(false)
            }
        }

        let mut sum = 0;
        for i in 0..size {
            sum += *input.get(i).unwrap();
            if let Ok(res) = tree.query(&i.into()) {
                assert_eq!(res, sum);
            } else {
                assert!(false);
            }
        }
    }

    #[test]
    fn random_100_point_data_with_random_update_order_with_intermediate_asserts() {
        let size = 100;
        let mut input = vec![];
        let mut rng = rand::thread_rng();

        for _i in 0..size {
            input.push((rng.gen::<f32>() * 100.0) as i32);
        }

        let mut tree = FixedSizeFenwickTree::<i32>::new(size);

        let mut random_indexes: Vec<usize> = (0..size).collect();
        random_indexes.shuffle(&mut rng);
        for i in random_indexes {
            let sum_before_update = tree.query(&i.into()).unwrap();
            let value_to_update = *input.get(i).unwrap();
            if let Err(_) = tree.update(&i.into(), value_to_update) {
                assert!(false)
            }
            let sum_after_update = tree.query(&i.into()).unwrap();
            assert_eq!(sum_after_update - sum_before_update, value_to_update)
        }

        let mut sum = 0;
        for i in 0..size {
            sum += *input.get(i).unwrap();

            if let Ok(res) = tree.query(&i.into()) {
                assert_eq!(res, sum);
            } else {
                assert!(false)
            }
        }
    }
}

#[cfg(all(feature = "benchmarks", test))]
mod benchmarks {
    extern crate test;
    use rand::seq::SliceRandom;
    use rand::Rng;
    use test::Bencher;

    use crate::prelude::*;

    fn bench_update(b: &mut Bencher, size: usize) {
        let mut input = vec![];
        let mut rng = rand::thread_rng();

        for _i in 0..size {
            input.push((rng.gen::<f32>() * 100.0) as i32);
        }

        let mut tree = FixedSizeFenwickTree::<i32>::new(size);

        let random_indexes: Vec<usize> = (0..size).collect();

        b.iter(|| {
            let i = *random_indexes.choose(&mut rng).unwrap();
            let value_to_update = *input.get(i).unwrap();
            tree.update(&i.into(), value_to_update).unwrap()
        });
    }

    fn bench_reads(b: &mut Bencher, size: usize) {
        let mut input = vec![];
        let mut rng = rand::thread_rng();

        for _i in 0..size {
            input.push((rng.gen::<f32>() * 100.0) as i32);
        }

        let mut tree = FixedSizeFenwickTree::<i32>::new(size);
        let random_indexes: Vec<usize> = (0..size).collect();

        for _i in 0..size {
            let i = *random_indexes.choose(&mut rng).unwrap();
            let value_to_update = *input.get(i).unwrap();
            tree.update(&i.into(), value_to_update).unwrap()
        }

        b.iter(|| {
            let i = *random_indexes.choose(&mut rng).unwrap();
            tree.query(&i.into()).unwrap();
        });
    }

    #[bench]
    fn bench_1000_writes(b: &mut Bencher) {
        bench_update(b, 1000);
    }

    #[bench]
    fn bench_10000_writes(b: &mut Bencher) {
        bench_update(b, 10000);
    }

    #[bench]
    fn bench_100000_writes(b: &mut Bencher) {
        bench_update(b, 100000);
    }

    #[bench]
    fn bench_10000000_writes(b: &mut Bencher) {
        bench_update(b, 10000000);
    }

    #[bench]
    fn bench_1000_reads(b: &mut Bencher) {
        bench_reads(b, 1000);
    }

    #[bench]
    fn bench_10000_reads(b: &mut Bencher) {
        bench_reads(b, 10000);
    }

    #[bench]
    fn bench_100000_reads(b: &mut Bencher) {
        bench_reads(b, 100000);
    }

    #[bench]
    fn bench_10000000_reads(b: &mut Bencher) {
        bench_reads(b, 10000000);
    }
}