fedimint_threshold_crypto/
lib.rs

1//! A pairing-based threshold cryptosystem for collaborative decryption and signatures.
2
3// Clippy warns that it's dangerous to derive `PartialEq` and explicitly implement `Hash`, but the
4// `pairing::bls12_381` types don't implement `Hash`, so we can't derive it.
5#![allow(clippy::derive_hash_xor_eq)]
6// When using the mocktography, the resulting field elements become wrapped `u32`s, suddenly
7// triggering pass-by-reference warnings. They are conditionally disabled for this reason:
8#![cfg_attr(
9    feature = "use-insecure-test-only-mock-crypto",
10    allow(clippy::trivially_copy_pass_by_ref)
11)]
12#![warn(missing_docs)]
13
14pub use ff;
15pub use group;
16pub use pairing;
17
18mod cmp_pairing;
19mod into_fr;
20
21#[cfg(feature = "codec-support")]
22#[macro_use]
23mod codec_impl;
24
25pub mod error;
26pub mod poly;
27pub mod serde_impl;
28
29use std::borrow::Borrow;
30use std::cmp::Ordering;
31use std::convert::TryInto;
32use std::fmt;
33use std::hash::{Hash, Hasher};
34use std::ops::{AddAssign, Mul, MulAssign, SubAssign};
35use std::slice::Iter;
36use std::vec::Vec;
37
38use ff::Field;
39use hex_fmt::HexFmt;
40use log::debug;
41use pairing::Engine;
42use rand::distributions::{Distribution, Standard};
43use rand::{rngs::OsRng, Rng, RngCore, SeedableRng};
44use rand_chacha::ChaChaRng;
45use serde::{Deserialize, Serialize};
46use zeroize::Zeroize;
47
48use crate::cmp_pairing::cmp_projective;
49use crate::error::{Error, ScalaromBytesError, ScalaromBytesResult, Result};
50use crate::poly::{Commitment, Poly};
51
52pub use crate::into_fr::IntoScalar;
53
54mod util;
55use util::sha3_256;
56
57#[cfg(feature = "use-insecure-test-only-mock-crypto")]
58mod mock;
59
60#[cfg(feature = "use-insecure-test-only-mock-crypto")]
61pub use crate::mock::{
62    Mersenne8 as Scalar, Mocktography as PEngine, Ms8Affine as G1Affine,
63    Ms8Affine as G2Affine, Ms8Projective as G1Projective, Ms8Projective as G2Projective, PK_SIZE, SIG_SIZE,
64};
65
66#[cfg(not(feature = "use-insecure-test-only-mock-crypto"))]
67pub use bls12_381::{Bls12 as PEngine, Scalar, G1Affine, G2Affine, G1Projective, G2Projective};
68use group::{Curve, Group, GroupEncoding};
69
70/// The size of a key's representation in bytes.
71#[cfg(not(feature = "use-insecure-test-only-mock-crypto"))]
72pub const PK_SIZE: usize = 48;
73
74/// The size of a signature's representation in bytes.
75#[cfg(not(feature = "use-insecure-test-only-mock-crypto"))]
76pub const SIG_SIZE: usize = 96;
77
78/// A public key.
79#[derive(Deserialize, Serialize, Copy, Clone, PartialEq, Eq)]
80pub struct PublicKey(#[serde(with = "serde_impl::projective_publickey")] pub G1Projective);
81
82impl Hash for PublicKey {
83    fn hash<H: Hasher>(&self, state: &mut H) {
84        self.0.to_affine().to_bytes().as_ref().hash(state);
85    }
86}
87
88impl fmt::Debug for PublicKey {
89    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
90        let uncomp = self.0.to_affine().to_bytes();
91        write!(f, "PublicKey({:0.10})", HexFmt(uncomp))
92    }
93}
94
95impl PartialOrd for PublicKey {
96    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
97        Some(self.cmp(&other))
98    }
99}
100
101impl Ord for PublicKey {
102    fn cmp(&self, other: &Self) -> Ordering {
103        cmp_projective(&self.0, &other.0)
104    }
105}
106
107impl PublicKey {
108    pub fn from(g1: G1Projective) -> Self {
109        PublicKey(g1)
110    }
111
112    /// Returns `true` if the signature matches the element of `G2`.
113    pub fn verify_g2<H: Into<G2Affine>>(&self, sig: &Signature, hash: H) -> bool {
114        // TODO: why do we need to call to_affine now?
115        PEngine::pairing(&self.0.to_affine(), &hash.into()) == PEngine::pairing(&G1Affine::generator(), &sig.0.to_affine())
116    }
117
118    /// Returns `true` if the signature matches the message.
119    ///
120    /// This is equivalent to `verify_g2(sig, hash_g2(msg))`.
121    pub fn verify<M: AsRef<[u8]>>(&self, sig: &Signature, msg: M) -> bool {
122        self.verify_g2(sig, hash_g2(msg))
123    }
124
125    /// Encrypts the message using the OS random number generator.
126    ///
127    /// Uses the `OsRng` by default. To pass in a custom random number generator, use
128    /// `encrypt_with_rng()`.
129    pub fn encrypt<M: AsRef<[u8]>>(&self, msg: M) -> Ciphertext {
130        self.encrypt_with_rng(&mut OsRng, msg)
131    }
132
133    /// Encrypts the message.
134    pub fn encrypt_with_rng<R: RngCore, M: AsRef<[u8]>>(&self, rng: &mut R, msg: M) -> Ciphertext {
135        let r: Scalar = Scalar::random(rng);
136        let u = G1Affine::generator().mul(r);
137        let v: Vec<u8> = {
138            let g = self.0.to_affine().mul(r);
139            xor_with_hash(g, msg.as_ref())
140        };
141        let w = hash_g1_g2(u, &v).to_affine().mul(r);
142        Ciphertext(u, v, w)
143    }
144
145    /// Returns the key with the given representation, if valid.
146    pub fn from_bytes<B: Borrow<[u8; PK_SIZE]>>(bytes: B) -> ScalaromBytesResult<Self> {
147        let mut compressed: <G1Affine as GroupEncoding>::Repr = Default::default();
148        compressed.as_mut().copy_from_slice(bytes.borrow());
149        // FIXME: make const time
150        let opt_affine: Option<G1Affine> = G1Affine::from_bytes(&compressed).into();
151        let projective = opt_affine.ok_or(ScalaromBytesError::Invalid)?.into();
152        Ok(PublicKey(projective))
153    }
154
155    /// Returns a byte string representation of the public key.
156    pub fn to_bytes(&self) -> [u8; PK_SIZE] {
157        let mut bytes = [0u8; PK_SIZE];
158        bytes.copy_from_slice(self.0.to_affine().to_bytes().as_ref());
159        bytes
160    }
161}
162
163/// A public key share.
164#[cfg_attr(feature = "codec-support", derive(codec::Encode, codec::Decode))]
165#[derive(Deserialize, Serialize, Clone, Copy, PartialEq, Eq, Hash, Ord, PartialOrd)]
166pub struct PublicKeyShare(pub PublicKey);
167
168impl fmt::Debug for PublicKeyShare {
169    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
170        let uncomp = (self.0).0.to_affine().to_uncompressed();
171        write!(f, "PublicKeyShare({:0.10})", HexFmt(uncomp))
172    }
173}
174
175impl PublicKeyShare {
176    /// Returns `true` if the signature matches the element of `G2`.
177    pub fn verify_g2<H: Into<G2Affine>>(&self, sig: &SignatureShare, hash: H) -> bool {
178        self.0.verify_g2(&sig.0, hash)
179    }
180
181    /// Returns `true` if the signature matches the message.
182    ///
183    /// This is equivalent to `verify_g2(sig, hash_g2(msg))`.
184    pub fn verify<M: AsRef<[u8]>>(&self, sig: &SignatureShare, msg: M) -> bool {
185        self.verify_g2(sig, hash_g2(msg))
186    }
187
188    /// Returns `true` if the decryption share matches the ciphertext.
189    pub fn verify_decryption_share(&self, share: &DecryptionShare, ct: &Ciphertext) -> bool {
190        let Ciphertext(ref u, ref v, ref w) = *ct;
191        let hash = hash_g1_g2(*u, v);
192        PEngine::pairing(&share.0.to_affine(), &hash.to_affine()) == PEngine::pairing(&(self.0).0.to_affine(), &w.to_affine())
193    }
194
195    /// Returns the key share with the given representation, if valid.
196    pub fn from_bytes<B: Borrow<[u8; PK_SIZE]>>(bytes: B) -> ScalaromBytesResult<Self> {
197        Ok(PublicKeyShare(PublicKey::from_bytes(bytes)?))
198    }
199
200    /// Returns a byte string representation of the public key share.
201    pub fn to_bytes(&self) -> [u8; PK_SIZE] {
202        self.0.to_bytes()
203    }
204}
205
206/// A signature.
207// Note: Random signatures can be generated for testing.
208#[derive(Deserialize, Serialize, Clone, PartialEq, Eq)]
209pub struct Signature(#[serde(with = "serde_impl::projective")] G2Projective);
210
211impl PartialOrd for Signature {
212    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
213        Some(self.cmp(&other))
214    }
215}
216
217impl Ord for Signature {
218    fn cmp(&self, other: &Self) -> Ordering {
219        cmp_projective(&self.0, &other.0)
220    }
221}
222
223impl Distribution<Signature> for Standard {
224    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Signature {
225        Signature(G2Projective::random(rng))
226    }
227}
228
229impl fmt::Debug for Signature {
230    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
231        let uncomp = self.0.to_affine().to_uncompressed();
232        write!(f, "Signature({:0.10})", HexFmt(uncomp))
233    }
234}
235
236impl Hash for Signature {
237    fn hash<H: Hasher>(&self, state: &mut H) {
238        self.0.to_affine().to_bytes().as_ref().hash(state);
239    }
240}
241
242impl Signature {
243    /// Returns `true` if the signature contains an odd number of ones.
244    pub fn parity(&self) -> bool {
245        let uncomp = self.0.to_affine().to_uncompressed();
246        let xor_bytes: u8 = uncomp.as_ref().iter().fold(0, |result, byte| result ^ byte);
247        let parity = 0 != xor_bytes.count_ones() % 2;
248        debug!("Signature: {:0.10}, parity: {}", HexFmt(uncomp), parity);
249        parity
250    }
251
252    /// Returns the signature with the given representation, if valid.
253    pub fn from_bytes<B: Borrow<[u8; SIG_SIZE]>>(bytes: B) -> ScalaromBytesResult<Self> {
254        let mut compressed: <G2Affine as GroupEncoding>::Repr = Default::default();
255        compressed.as_mut().copy_from_slice(bytes.borrow());
256        let opt_affine: Option<G2Affine> = G2Affine::from_bytes(&compressed).into();
257        let projective = opt_affine.ok_or(ScalaromBytesError::Invalid)?.into();
258        Ok(Signature(projective))
259    }
260
261    /// Returns a byte string representation of the signature.
262    pub fn to_bytes(&self) -> [u8; SIG_SIZE] {
263        let mut bytes = [0u8; SIG_SIZE];
264        bytes.copy_from_slice(self.0.to_affine().to_bytes().as_ref());
265        bytes
266    }
267}
268
269/// A signature share.
270// Note: Random signature shares can be generated for testing.
271#[cfg_attr(feature = "codec-support", derive(codec::Encode, codec::Decode))]
272#[derive(Deserialize, Serialize, Clone, PartialEq, Eq, Hash, Ord, PartialOrd)]
273pub struct SignatureShare(pub Signature);
274
275impl Distribution<SignatureShare> for Standard {
276    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> SignatureShare {
277        SignatureShare(rng.gen())
278    }
279}
280
281impl fmt::Debug for SignatureShare {
282    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
283        let uncomp = (self.0).0.to_affine().to_uncompressed();
284        write!(f, "SignatureShare({:0.10})", HexFmt(uncomp))
285    }
286}
287
288impl SignatureShare {
289    /// Returns the signature share with the given representation, if valid.
290    pub fn from_bytes<B: Borrow<[u8; SIG_SIZE]>>(bytes: B) -> ScalaromBytesResult<Self> {
291        Ok(SignatureShare(Signature::from_bytes(bytes)?))
292    }
293
294    /// Returns a byte string representation of the signature share.
295    pub fn to_bytes(&self) -> [u8; SIG_SIZE] {
296        self.0.to_bytes()
297    }
298}
299
300/// A secret key; wraps a single prime field element. The field element is
301/// heap allocated to avoid any stack copying that result when passing
302/// `SecretKey`s between stack frames.
303///
304/// # Serde integration
305/// `SecretKey` implements `Deserialize` but not `Serialize` to avoid accidental
306/// serialization in insecure contexts. To enable both use the `::serde_impl::SerdeSecret`
307/// wrapper which implements both `Deserialize` and `Serialize`.
308#[derive(PartialEq, Eq, Clone)]
309pub struct SecretKey(pub Scalar);
310
311impl Zeroize for SecretKey {
312    fn zeroize(&mut self) {
313        self.0.zeroize();
314    }
315}
316
317impl Drop for SecretKey {
318    fn drop(&mut self) {
319        self.zeroize();
320    }
321}
322
323/// Creates a `SecretKey` containing the zero prime field element.
324impl Default for SecretKey {
325    fn default() -> Self {
326        let mut fr = Scalar::zero();
327        SecretKey::from_mut(&mut fr)
328    }
329}
330
331impl Distribution<SecretKey> for Standard {
332    /// Creates a new random instance of `SecretKey`. If you do not need to specify your own RNG,
333    /// you should use the [`SecretKey::random()`](struct.SecretKey.html#method.random) constructor,
334    /// which uses [`rand::thread_rng()`](https://docs.rs/rand/0.7.2/rand/fn.thread_rng.html)
335    /// internally as its RNG.
336    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> SecretKey {
337        SecretKey(Scalar::random(rng))
338    }
339}
340
341/// A debug statement where the secret prime field element is redacted.
342impl fmt::Debug for SecretKey {
343    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
344        f.debug_tuple("SecretKey").field(&DebugDots).finish()
345    }
346}
347
348impl SecretKey {
349    /// Creates a new `SecretKey` from a mutable reference to a field element. This constructor
350    /// takes a reference to avoid any unnecessary stack copying/moving of secrets (i.e. the field
351    /// element). The field element is copied bytewise onto the heap, the resulting `Box` is
352    /// stored in the returned `SecretKey`.
353    ///
354    /// *WARNING* this constructor will overwrite the referenced `Scalar` element with zeros after it
355    /// has been copied onto the heap.
356    pub fn from_mut(fr: &mut Scalar) -> Self {
357        let sk = SecretKey(*fr);
358        fr.zeroize();
359        sk
360    }
361
362    /// Creates a new random instance of `SecretKey`. If you want to use/define your own random
363    /// number generator, you should use the constructor:
364    /// [`SecretKey::sample()`](struct.SecretKey.html#impl-Distribution<SecretKey>). If you do not
365    /// need to specify your own RNG, you should use the
366    /// [`SecretKey::random()`](struct.SecretKey.html#method.random) constructor, which uses
367    /// [`rand::thread_rng()`](https://docs.rs/rand/0.7.2/rand/fn.thread_rng.html) internally as its
368    /// RNG.
369    pub fn random() -> Self {
370        rand::random()
371    }
372
373    /// Returns the matching public key.
374    pub fn public_key(&self) -> PublicKey {
375        PublicKey(G1Affine::generator().mul(self.0))
376    }
377
378    /// Signs the given element of `G2`.
379    pub fn sign_g2<H: Into<G2Affine>>(&self, hash: H) -> Signature {
380        Signature(hash.into().mul(self.0))
381    }
382
383    /// Signs the given message.
384    ///
385    /// This is equivalent to `sign_g2(hash_g2(msg))`.
386    pub fn sign<M: AsRef<[u8]>>(&self, msg: M) -> Signature {
387        self.sign_g2(hash_g2(msg))
388    }
389
390    /// Returns the decrypted text, or `None`, if the ciphertext isn't valid.
391    pub fn decrypt(&self, ct: &Ciphertext) -> Option<Vec<u8>> {
392        if !ct.verify() {
393            return None;
394        }
395        let Ciphertext(ref u, ref v, _) = *ct;
396        let g = u.to_affine().mul(self.0);
397        Some(xor_with_hash(g, v))
398    }
399
400    /// Generates a non-redacted debug string. This method differs from
401    /// the `Debug` implementation in that it *does* leak the secret prime
402    /// field element.
403    pub fn reveal(&self) -> String {
404        format!("SecretKey({:?})", self.0)
405    }
406}
407
408/// A secret key share.
409///
410/// # Serde integration
411/// `SecretKeyShare` implements `Deserialize` but not `Serialize` to avoid accidental
412/// serialization in insecure contexts. To enable both use the `::serde_impl::SerdeSecret`
413/// wrapper which implements both `Deserialize` and `Serialize`.
414#[derive(Clone, PartialEq, Eq, Default)]
415pub struct SecretKeyShare(pub SecretKey);
416
417/// Can be used to create a new random instance of `SecretKeyShare`. This is only useful for testing
418/// purposes as such a key has not been derived from a `SecretKeySet`.
419impl Distribution<SecretKeyShare> for Standard {
420    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> SecretKeyShare {
421        SecretKeyShare(rng.gen())
422    }
423}
424
425impl fmt::Debug for SecretKeyShare {
426    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
427        f.debug_tuple("SecretKeyShare").field(&DebugDots).finish()
428    }
429}
430
431impl SecretKeyShare {
432    /// Creates a new `SecretKeyShare` from a mutable reference to a field element. This
433    /// constructor takes a reference to avoid any unnecessary stack copying/moving of secrets
434    /// field elements. The field element will be copied bytewise onto the heap, the resulting
435    /// `Box` is stored in the `SecretKey` which is then wrapped in a `SecretKeyShare`.
436    ///
437    /// *WARNING* this constructor will overwrite the pointed to `Scalar` element with zeros once it
438    /// has been copied into a new `SecretKeyShare`.
439    pub fn from_mut(fr: &mut Scalar) -> Self {
440        SecretKeyShare(SecretKey::from_mut(fr))
441    }
442
443    /// Returns the matching public key share.
444    pub fn public_key_share(&self) -> PublicKeyShare {
445        PublicKeyShare(self.0.public_key())
446    }
447
448    /// Signs the given element of `G2`.
449    pub fn sign_g2<H: Into<G2Affine>>(&self, hash: H) -> SignatureShare {
450        SignatureShare(self.0.sign_g2(hash))
451    }
452
453    /// Signs the given message.
454    pub fn sign<M: AsRef<[u8]>>(&self, msg: M) -> SignatureShare {
455        SignatureShare(self.0.sign(msg))
456    }
457
458    /// Returns a decryption share, or `None`, if the ciphertext isn't valid.
459    pub fn decrypt_share(&self, ct: &Ciphertext) -> Option<DecryptionShare> {
460        if !ct.verify() {
461            return None;
462        }
463        Some(self.decrypt_share_no_verify(ct))
464    }
465
466    /// Returns a decryption share, without validating the ciphertext.
467    pub fn decrypt_share_no_verify(&self, ct: &Ciphertext) -> DecryptionShare {
468        DecryptionShare(ct.0.to_affine().mul((self.0).0))
469    }
470
471    /// Generates a non-redacted debug string. This method differs from
472    /// the `Debug` implementation in that it *does* leak the secret prime
473    /// field element.
474    pub fn reveal(&self) -> String {
475        format!("SecretKeyShare({:?})", (self.0).0)
476    }
477}
478
479/// An encrypted message.
480#[derive(Deserialize, Serialize, Debug, Clone, PartialEq, Eq)]
481pub struct Ciphertext(
482    #[serde(with = "serde_impl::projective")] G1Projective,
483    Vec<u8>,
484    #[serde(with = "serde_impl::projective")] G2Projective,
485);
486
487impl Hash for Ciphertext {
488    fn hash<H: Hasher>(&self, state: &mut H) {
489        let Ciphertext(ref u, ref v, ref w) = *self;
490        u.to_affine().to_bytes().as_ref().hash(state);
491        v.hash(state);
492        w.to_affine().to_bytes().as_ref().hash(state);
493    }
494}
495
496impl PartialOrd for Ciphertext {
497    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
498        Some(self.cmp(&other))
499    }
500}
501
502impl Ord for Ciphertext {
503    fn cmp(&self, other: &Self) -> Ordering {
504        let Ciphertext(ref u0, ref v0, ref w0) = self;
505        let Ciphertext(ref u1, ref v1, ref w1) = other;
506        cmp_projective(u0, u1)
507            .then(v0.cmp(v1))
508            .then(cmp_projective(w0, w1))
509    }
510}
511
512impl Ciphertext {
513    /// Returns `true` if this is a valid ciphertext. This check is necessary to prevent
514    /// chosen-ciphertext attacks.
515    pub fn verify(&self) -> bool {
516        let Ciphertext(ref u, ref v, ref w) = *self;
517        let hash = hash_g1_g2(*u, v);
518        PEngine::pairing(&G1Affine::generator(), &w.to_affine()) == PEngine::pairing(&u.to_affine(), &hash.to_affine())
519    }
520
521    /// Serializes the ciphertext into a byte vector.
522    pub fn to_bytes(&self) -> Vec<u8> {
523        let Ciphertext(ref u, ref v, ref w) = *self;
524
525        let mut bytes = Vec::with_capacity(48 + 96 + v.len());
526        bytes.extend_from_slice(&u.to_affine().to_compressed());
527        bytes.extend_from_slice(&w.to_affine().to_compressed());
528        bytes.extend_from_slice(&v);
529        bytes
530    }
531
532    // FIXME: make CT
533    /// Deserializes a ciphertext from a byte slice.
534    pub fn from_bytes(bytes: &[u8]) -> Option<Self> {
535        if bytes.len() < 48 + 96 {
536            return None;
537        }
538
539
540        let u_bytes: [u8; 48] = bytes[..48].try_into().expect("slice has correct length");
541        let u_res = G1Affine::from_compressed(&u_bytes);
542        if u_res.is_none().unwrap_u8() == 1 {
543            return None;
544        }
545
546        let w_bytes: [u8; 96] = bytes[48..48 + 96].try_into().expect("slice has correct length");
547        let w_res = G2Affine::from_compressed(&w_bytes);
548        if w_res.is_none().unwrap_u8() == 1 {
549            return None;
550        }
551
552        let u = G1Projective::from(u_res.unwrap());
553        let w = G2Projective::from(w_res.unwrap());
554        let v = bytes[48 + 96..].to_vec();
555
556        Some(Ciphertext(u, v, w))
557    }
558}
559
560/// A decryption share. A threshold of decryption shares can be used to decrypt a message.
561#[derive(Clone, Deserialize, Serialize, PartialEq, Eq)]
562pub struct DecryptionShare(#[serde(with = "serde_impl::projective")] G1Projective);
563
564impl DecryptionShare {
565    /// Serializes the decryption share into a byte vector.
566    pub fn to_bytes(&self) -> [u8; 48] {
567        self.0.to_affine().to_compressed()
568    }
569
570    // FIXME: make CT
571    /// Deserializes a decryption share from a byte slice.
572    pub fn from_bytes(bytes: &[u8; 48]) -> Option<Self> {
573        let res = G1Affine::from_compressed(bytes);
574        if res.is_none().unwrap_u8() == 1 {
575            return None;
576        }
577        Some(DecryptionShare(G1Projective::from(res.unwrap())))
578    }
579}
580
581impl Distribution<DecryptionShare> for Standard {
582    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> DecryptionShare {
583        DecryptionShare(G1Projective::random(rng))
584    }
585}
586
587impl Hash for DecryptionShare {
588    fn hash<H: Hasher>(&self, state: &mut H) {
589        self.0.to_affine().to_bytes().as_ref().hash(state);
590    }
591}
592
593impl fmt::Debug for DecryptionShare {
594    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
595        f.debug_tuple("DecryptionShare").field(&DebugDots).finish()
596    }
597}
598
599/// A public key and an associated set of public key shares.
600#[derive(Serialize, Deserialize, Clone, Debug, PartialEq, Eq, Ord, PartialOrd)]
601pub struct PublicKeySet {
602    /// The coefficients of a polynomial whose value at `0` is the "master key", and value at
603    /// `i + 1` is key share number `i`.
604    pub commit: Commitment,
605}
606
607impl Hash for PublicKeySet {
608    fn hash<H: Hasher>(&self, state: &mut H) {
609        self.commit.hash(state);
610    }
611}
612
613impl From<Commitment> for PublicKeySet {
614    fn from(commit: Commitment) -> PublicKeySet {
615        PublicKeySet { commit }
616    }
617}
618
619impl PublicKeySet {
620    /// Returns the coefficients representing the pk shares of the set
621    pub fn coefficients(&self) -> Iter<G1Projective> {
622        self.commit.coeff.iter()
623    }
624
625    /// Returns the threshold `t`: any set of `t + 1` signature shares can be combined into a full
626    /// signature.
627    pub fn threshold(&self) -> usize {
628        self.commit.degree()
629    }
630
631    /// Returns the public key.
632    pub fn public_key(&self) -> PublicKey {
633        PublicKey(self.commit.coeff[0])
634    }
635
636    /// Returns the `i`-th public key share.
637    pub fn public_key_share<T: IntoScalar>(&self, i: T) -> PublicKeyShare {
638        let value = self.commit.evaluate(into_fr_plus_1(i));
639        PublicKeyShare(PublicKey(value))
640    }
641
642    /// Combines the shares into a signature that can be verified with the main public key.
643    ///
644    /// The validity of the shares is not checked: If one of them is invalid, the resulting
645    /// signature also is. Only returns an error if there is a duplicate index or too few shares.
646    ///
647    /// Validity of signature shares should be checked beforehand, or validity of the result
648    /// afterwards:
649    ///
650    /// ```
651    /// # extern crate rand;
652    /// #
653    /// # use std::collections::BTreeMap;
654    /// # use threshold_crypto::SecretKeySet;
655    /// #
656    /// let sk_set = SecretKeySet::random(3, &mut rand::thread_rng());
657    /// let sk_shares: Vec<_> = (0..6).map(|i| sk_set.secret_key_share(i)).collect();
658    /// let pk_set = sk_set.public_keys();
659    /// let msg = "Happy birthday! If this is signed, at least four people remembered!";
660    ///
661    /// // Create four signature shares for the message.
662    /// let sig_shares: BTreeMap<_, _> = (0..4).map(|i| (i, sk_shares[i].sign(msg))).collect();
663    ///
664    /// // Validate the signature shares.
665    /// for (i, sig_share) in &sig_shares {
666    ///     assert!(pk_set.public_key_share(*i).verify(sig_share, msg));
667    /// }
668    ///
669    /// // Combine them to produce the main signature.
670    /// let sig = pk_set.combine_signatures(&sig_shares).expect("not enough shares");
671    ///
672    /// // Validate the main signature. If the shares were valid, this can't fail.
673    /// assert!(pk_set.public_key().verify(&sig, msg));
674    /// ```
675    pub fn combine_signatures<'a, T, I>(&self, shares: I) -> Result<Signature>
676    where
677        I: IntoIterator<Item = (T, &'a SignatureShare)>,
678        T: IntoScalar,
679    {
680        let samples = shares.into_iter().map(|(i, share)| (i, &(share.0).0));
681        Ok(Signature(interpolate(self.commit.degree(), samples)?))
682    }
683
684    /// Combines the shares to decrypt the ciphertext.
685    pub fn decrypt<'a, T, I>(&self, shares: I, ct: &Ciphertext) -> Result<Vec<u8>>
686    where
687        I: IntoIterator<Item = (T, &'a DecryptionShare)>,
688        T: IntoScalar,
689    {
690        let samples = shares.into_iter().map(|(i, share)| (i, &share.0));
691        let g = interpolate(self.commit.degree(), samples)?;
692        Ok(xor_with_hash(g, &ct.1))
693    }
694}
695
696/// A secret key and an associated set of secret key shares.
697#[derive(Clone, PartialEq, Eq)]
698pub struct SecretKeySet {
699    /// The coefficients of a polynomial whose value at `0` is the "master key", and value at
700    /// `i + 1` is key share number `i`.
701    poly: Poly,
702}
703
704impl From<Poly> for SecretKeySet {
705    fn from(poly: Poly) -> SecretKeySet {
706        SecretKeySet { poly }
707    }
708}
709
710impl SecretKeySet {
711    /// Creates a set of secret key shares, where any `threshold + 1` of them can collaboratively
712    /// sign and decrypt. This constructor is identical to the `SecretKeySet::try_random()` in every
713    /// way except that this constructor panics if the other returns an error.
714    ///
715    /// # Panic
716    ///
717    /// Panics if the `threshold` is too large for the coefficients to fit into a `Vec`.
718    pub fn random<R: Rng>(threshold: usize, rng: &mut R) -> Self {
719        SecretKeySet::try_random(threshold, rng)
720            .unwrap_or_else(|e| panic!("Failed to create random `SecretKeySet`: {}", e))
721    }
722
723    /// Creates a set of secret key shares, where any `threshold + 1` of them can collaboratively
724    /// sign and decrypt. This constructor is identical to the `SecretKeySet::random()` in every
725    /// way except that this constructor returns an `Err` where the `random` would panic.
726    pub fn try_random<R: Rng>(threshold: usize, rng: &mut R) -> Result<Self> {
727        Poly::try_random(threshold, rng).map(SecretKeySet::from)
728    }
729
730    /// Returns the threshold `t`: any set of `t + 1` signature shares can be combined into a full
731    /// signature.
732    pub fn threshold(&self) -> usize {
733        self.poly.degree()
734    }
735
736    /// Returns the `i`-th secret key share.
737    pub fn secret_key_share<T: IntoScalar>(&self, i: T) -> SecretKeyShare {
738        let mut fr = self.poly.evaluate(into_fr_plus_1(i));
739        SecretKeyShare::from_mut(&mut fr)
740    }
741
742    /// Returns the corresponding public key set. That information can be shared publicly.
743    pub fn public_keys(&self) -> PublicKeySet {
744        PublicKeySet {
745            commit: self.poly.commitment(),
746        }
747    }
748
749    /// Returns the secret master key.
750    #[cfg(test)]
751    fn secret_key(&self) -> SecretKey {
752        let mut fr = self.poly.evaluate(0);
753        SecretKey::from_mut(&mut fr)
754    }
755}
756
757/// Returns a hash of the given message in `G2`.
758pub fn hash_g2<M: AsRef<[u8]>>(msg: M) -> G2Projective{
759    let digest = sha3_256(msg.as_ref());
760    G2Projective::random(&mut ChaChaRng::from_seed(digest))
761}
762
763/// Returns a hash of the group element and message, in the second group.
764fn hash_g1_g2<M: AsRef<[u8]>>(g1: G1Projective, msg: M) -> G2Projective {
765    // If the message is large, hash it, otherwise copy it.
766    // TODO: Benchmark and optimize the threshold.
767    let mut msg = if msg.as_ref().len() > 64 {
768        sha3_256(msg.as_ref()).to_vec()
769    } else {
770        msg.as_ref().to_vec()
771    };
772    msg.extend(g1.to_affine().to_bytes().as_ref());
773    hash_g2(&msg)
774}
775
776/// Returns the bitwise xor of `bytes` with a sequence of pseudorandom bytes determined by `g1`.
777fn xor_with_hash(g1: G1Projective, bytes: &[u8]) -> Vec<u8> {
778    let digest = sha3_256(g1.to_affine().to_bytes().as_ref());
779    let rng = ChaChaRng::from_seed(digest);
780    let xor = |(a, b): (u8, &u8)| a ^ b;
781    rng.sample_iter(&Standard).zip(bytes).map(xor).collect()
782}
783
784/// Given a list of `t + 1` samples `(i - 1, f(i) * g)` for a polynomial `f` of degree `t`, and a
785/// group generator `g`, returns `f(0) * g`.
786fn interpolate<C, B, T, I>(t: usize, items: I) -> Result<C>
787where
788    C: Curve,
789    <C as Group>::Scalar: MulAssign<Scalar> + MulAssign<<C as Group>::Scalar>,
790    I: IntoIterator<Item = (T, B)>,
791    T: IntoScalar,
792    B: Borrow<C>,
793{
794    let samples: Vec<_> = items
795        .into_iter()
796        .take(t + 1)
797        .map(|(i, sample)| (into_fr_plus_1(i), sample))
798        .collect();
799    if samples.len() <= t {
800        return Err(Error::NotEnoughShares);
801    }
802
803    if t == 0 {
804        return Ok(*samples[0].1.borrow());
805    }
806
807    // Compute the products `x_prod[i]` of all but the `i`-th entry.
808    let mut x_prod: Vec<C::Scalar> = Vec::with_capacity(t);
809    let mut tmp = C::Scalar::ONE;
810    x_prod.push(tmp);
811    for (x, _) in samples.iter().take(t) {
812        tmp.mul_assign(*x);
813        x_prod.push(tmp);
814    }
815    tmp = C::Scalar::ONE;
816    for (i, (x, _)) in samples[1..].iter().enumerate().rev() {
817        tmp.mul_assign(*x);
818        x_prod[i].mul_assign(tmp);
819    }
820
821    let mut result = C::identity();
822    for (mut l0, (x, sample)) in x_prod.into_iter().zip(&samples) {
823        // Compute the value at 0 of the Lagrange polynomial that is `0` at the other data
824        // points but `1` at `x`.
825        let mut denom = C::Scalar::ONE;
826        for (x0, _) in samples.iter().filter(|(x0, _)| x0 != x) {
827            let mut diff = *x0;
828            diff.sub_assign(x);
829            denom.mul_assign(diff);
830        }
831        // FIXME: make const time
832        let opt_inv: Option<_> = denom.invert().into();
833        l0.mul_assign(&opt_inv.ok_or(Error::DuplicateEntry)?);
834        result.add_assign(*sample.borrow() * l0);
835    }
836    Ok(result)
837}
838
839fn into_fr_plus_1<I: IntoScalar>(x: I) -> Scalar {
840    let mut result = Scalar::one();
841    result.add_assign(&x.into_fr());
842    result
843}
844
845/// Type that implements `Debug` printing three dots. This can be used to hide the contents of a
846/// field in a `Debug` implementation.
847struct DebugDots;
848
849impl fmt::Debug for DebugDots {
850    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
851        write!(f, "...")
852    }
853}
854
855#[cfg(test)]
856mod tests {
857    use super::*;
858
859    use std::collections::BTreeMap;
860
861    use rand::{self, distributions::Standard, random, Rng};
862
863    #[test]
864    fn test_interpolate() {
865        let mut rng = rand::thread_rng();
866        for deg in 0..5 {
867            println!("deg = {}", deg);
868            let comm = Poly::random(deg, &mut rng).commitment();
869            let mut values = Vec::new();
870            let mut x = 0;
871            for _ in 0..=deg {
872                x += rng.gen_range(1..5);
873                values.push((x - 1, comm.evaluate(x)));
874            }
875            let actual = interpolate(deg, values).expect("wrong number of values");
876            assert_eq!(comm.evaluate(0), actual);
877        }
878    }
879
880    #[test]
881    fn test_simple_sig() {
882        let sk0 = SecretKey::random();
883        let sk1 = SecretKey::random();
884        let pk0 = sk0.public_key();
885        let msg0 = b"Real news";
886        let msg1 = b"Fake news";
887        assert!(pk0.verify(&sk0.sign(msg0), msg0));
888        assert!(!pk0.verify(&sk1.sign(msg0), msg0)); // Wrong key.
889        assert!(!pk0.verify(&sk0.sign(msg1), msg0)); // Wrong message.
890    }
891
892    #[test]
893    fn test_threshold_sig() {
894        let mut rng = rand::thread_rng();
895        let sk_set = SecretKeySet::random(3, &mut rng);
896        let pk_set = sk_set.public_keys();
897        let pk_master = pk_set.public_key();
898
899        // Make sure the keys are different, and the first coefficient is the main key.
900        assert_ne!(pk_master, pk_set.public_key_share(0).0);
901        assert_ne!(pk_master, pk_set.public_key_share(1).0);
902        assert_ne!(pk_master, pk_set.public_key_share(2).0);
903
904        // Make sure we don't hand out the main secret key to anyone.
905        let sk_master = sk_set.secret_key();
906        let sk_share_0 = sk_set.secret_key_share(0).0;
907        let sk_share_1 = sk_set.secret_key_share(1).0;
908        let sk_share_2 = sk_set.secret_key_share(2).0;
909        assert_ne!(sk_master, sk_share_0);
910        assert_ne!(sk_master, sk_share_1);
911        assert_ne!(sk_master, sk_share_2);
912
913        let msg = "Totally real news";
914
915        // The threshold is 3, so 4 signature shares will suffice to recreate the share.
916        let sigs: BTreeMap<_, _> = [5, 8, 7, 10]
917            .iter()
918            .map(|&i| {
919                let sig = sk_set.secret_key_share(i).sign(msg);
920                (i, sig)
921            })
922            .collect();
923
924        // Each of the shares is a valid signature matching its public key share.
925        for (i, sig) in &sigs {
926            assert!(pk_set.public_key_share(*i).verify(sig, msg));
927        }
928
929        // Combined, they produce a signature matching the main public key.
930        let sig = pk_set.combine_signatures(&sigs).expect("signatures match");
931        assert!(pk_set.public_key().verify(&sig, msg));
932
933        // A different set of signatories produces the same signature.
934        let sigs2: BTreeMap<_, _> = [42, 43, 44, 45]
935            .iter()
936            .map(|&i| {
937                let sig = sk_set.secret_key_share(i).sign(msg);
938                (i, sig)
939            })
940            .collect();
941        let sig2 = pk_set.combine_signatures(&sigs2).expect("signatures match");
942        assert_eq!(sig, sig2);
943    }
944
945    #[test]
946    fn test_simple_enc() {
947        let sk_bob: SecretKey = random();
948        let sk_eve: SecretKey = random();
949        let pk_bob = sk_bob.public_key();
950        let msg = b"Muffins in the canteen today! Don't tell Eve!";
951        let ciphertext = pk_bob.encrypt(&msg[..]);
952        assert!(ciphertext.verify());
953
954        // Encoding/decoding ciphertexts works
955        let ciphertext_bytes = ciphertext.to_bytes();
956        let decoded_ciphertext = Ciphertext::from_bytes(&ciphertext_bytes).expect("invalid ciphertext");
957        assert_eq!(ciphertext, decoded_ciphertext);
958
959        // Bob can decrypt the message.
960        let decrypted = sk_bob.decrypt(&ciphertext).expect("invalid ciphertext");
961        assert_eq!(msg[..], decrypted[..]);
962
963        // Eve can't.
964        let decrypted_eve = sk_eve.decrypt(&ciphertext).expect("invalid ciphertext");
965        assert_ne!(msg[..], decrypted_eve[..]);
966
967        // Eve tries to trick Bob into decrypting `msg` xor `v`, but it doesn't validate.
968        let Ciphertext(u, v, w) = ciphertext;
969        let fake_ciphertext = Ciphertext(u, vec![0; v.len()], w);
970        assert!(!fake_ciphertext.verify());
971        assert_eq!(None, sk_bob.decrypt(&fake_ciphertext));
972    }
973
974    #[test]
975    fn test_random_extreme_thresholds() {
976        let mut rng = rand::thread_rng();
977        let sks = SecretKeySet::random(0, &mut rng);
978        assert_eq!(0, sks.threshold());
979        assert!(SecretKeySet::try_random(usize::max_value(), &mut rng).is_err());
980    }
981
982    #[test]
983    fn test_threshold_enc() {
984        let mut rng = rand::thread_rng();
985        let sk_set = SecretKeySet::random(3, &mut rng);
986        let pk_set = sk_set.public_keys();
987        let msg = b"Totally real news";
988        let ciphertext = pk_set.public_key().encrypt(&msg[..]);
989
990        // The threshold is 3, so 4 signature shares will suffice to decrypt.
991        let shares: BTreeMap<_, _> = [5, 8, 7, 10]
992            .iter()
993            .map(|&i| {
994                let dec_share = sk_set
995                    .secret_key_share(i)
996                    .decrypt_share(&ciphertext)
997                    .expect("ciphertext is invalid");
998
999                let encoded_decryption_share = dec_share.to_bytes();
1000                let decoded_encryption_share =
1001                    DecryptionShare::from_bytes(&encoded_decryption_share)
1002                        .expect("invalid decryption share");
1003                assert_eq!(dec_share, decoded_encryption_share);
1004
1005                (i, dec_share)
1006            })
1007            .collect();
1008
1009        // Each of the shares is valid matching its public key share.
1010        for (i, share) in &shares {
1011            pk_set
1012                .public_key_share(*i)
1013                .verify_decryption_share(share, &ciphertext);
1014        }
1015
1016        // Combined, they can decrypt the message.
1017        let decrypted = pk_set
1018            .decrypt(&shares, &ciphertext)
1019            .expect("decryption shares match");
1020        assert_eq!(msg[..], decrypted[..]);
1021    }
1022
1023    /// Some basic sanity checks for the `hash_g2` function.
1024    #[test]
1025    fn test_hash_g2() {
1026        let rng = rand::thread_rng();
1027        let msg: Vec<u8> = rng.sample_iter(&Standard).take(1000).collect();
1028        let msg_end0: Vec<u8> = msg.iter().chain(b"end0").cloned().collect();
1029        let msg_end1: Vec<u8> = msg.iter().chain(b"end1").cloned().collect();
1030
1031        assert_eq!(hash_g2(&msg), hash_g2(&msg));
1032        assert_ne!(hash_g2(&msg), hash_g2(&msg_end0));
1033        assert_ne!(hash_g2(&msg_end0), hash_g2(&msg_end1));
1034    }
1035
1036    /// Some basic sanity checks for the `hash_g1_g2` function.
1037    #[test]
1038    fn test_hash_g1_g2() {
1039        let mut rng = rand::thread_rng();
1040        let msg: Vec<u8> = (&mut rng).sample_iter(&Standard).take(1000).collect();
1041        let msg_end0: Vec<u8> = msg.iter().chain(b"end0").cloned().collect();
1042        let msg_end1: Vec<u8> = msg.iter().chain(b"end1").cloned().collect();
1043        let g0 = G1Projective::random(&mut rng);
1044        let g1 = G1Projective::random(&mut rng);
1045
1046        assert_eq!(hash_g1_g2(g0, &msg), hash_g1_g2(g0, &msg));
1047        assert_ne!(hash_g1_g2(g0, &msg), hash_g1_g2(g0, &msg_end0));
1048        assert_ne!(hash_g1_g2(g0, &msg_end0), hash_g1_g2(g0, &msg_end1));
1049        assert_ne!(hash_g1_g2(g0, &msg), hash_g1_g2(g1, &msg));
1050    }
1051
1052    /// Some basic sanity checks for the `hash_bytes` function.
1053    #[test]
1054    fn test_xor_with_hash() {
1055        let mut rng = rand::thread_rng();
1056        let g0 = G1Projective::random(&mut rng);
1057        let g1 = G1Projective::random(&mut rng);
1058        let xwh = xor_with_hash;
1059        assert_eq!(xwh(g0, &[0; 5]), xwh(g0, &[0; 5]));
1060        assert_ne!(xwh(g0, &[0; 5]), xwh(g1, &[0; 5]));
1061        assert_eq!(5, xwh(g0, &[0; 5]).len());
1062        assert_eq!(6, xwh(g0, &[0; 6]).len());
1063        assert_eq!(20, xwh(g0, &[0; 20]).len());
1064    }
1065
1066    #[test]
1067    fn test_from_to_bytes() {
1068        let sk: SecretKey = random();
1069        let sig = sk.sign("Please sign here: ______");
1070        let pk = sk.public_key();
1071        let pk2 = PublicKey::from_bytes(pk.to_bytes()).expect("invalid pk representation");
1072        assert_eq!(pk, pk2);
1073        let sig2 = Signature::from_bytes(sig.to_bytes()).expect("invalid sig representation");
1074        assert_eq!(sig, sig2);
1075    }
1076
1077    #[test]
1078    fn test_serde() {
1079        let sk = SecretKey::random();
1080        let sig = sk.sign("Please sign here: ______");
1081        let pk = sk.public_key();
1082        let ser_pk = bincode::serialize(&pk).expect("serialize public key");
1083        let deser_pk = bincode::deserialize(&ser_pk).expect("deserialize public key");
1084        let serde_ser_pk = serde_json::to_string(&pk).expect("serde_json serialize public key");
1085        let serde_deser_pk: PublicKey = serde_json::from_str(&serde_ser_pk).expect("serde_json deserialized public key");
1086        assert_eq!(serde_ser_pk.chars().count(), PK_SIZE * 2 + 2); // accounts for that each hex byte has 2 chars, and theres leading and trailing '"'
1087        assert_eq!(pk, deser_pk);
1088        assert_eq!(pk, serde_deser_pk);
1089        let ser_sig = bincode::serialize(&sig).expect("serialize signature");
1090        let deser_sig = bincode::deserialize(&ser_sig).expect("deserialize signature");
1091        assert_eq!(ser_sig.len(), SIG_SIZE);
1092        assert_eq!(sig, deser_sig);
1093
1094        let threshold = 3;
1095        let sk_set = SecretKeySet::random(threshold, &mut OsRng::default());
1096        let pk_set = sk_set.public_keys();
1097        let ser_pk_set = serde_json::to_string(&pk_set).expect("serialize public key set");
1098        let de_pk_set = serde_json::from_str(&ser_pk_set).expect("deserialize public key set");
1099        assert_eq!(pk_set, de_pk_set);
1100
1101        for i in 0..sk_set.threshold() {
1102            let sk_share = sk_set.secret_key_share(i);
1103            let pk_share = sk_share.public_key_share();
1104            let ser_pk_share = serde_json::to_string(&pk_share).expect("serialize public key share");
1105            let de_pk_share: PublicKeyShare = serde_json::from_str(&ser_pk_share).expect("serialize public key share");
1106            assert_eq!(pk_share, de_pk_share);
1107        }
1108    }
1109
1110    #[cfg(feature = "codec-support")]
1111    #[test]
1112    fn test_codec() {
1113        use codec::{Decode, Encode};
1114        use rand::distributions::{Distribution, Standard};
1115        use rand::thread_rng;
1116
1117        macro_rules! assert_codec {
1118            ($obj:expr, $type:ty) => {
1119                let encoded: Vec<u8> = $obj.encode();
1120                let decoded: $type = <$type>::decode(&mut &encoded[..]).unwrap();
1121                assert_eq!(decoded, $obj.clone());
1122            };
1123        }
1124
1125        let sk = SecretKey::random();
1126        let pk = sk.public_key();
1127        assert_codec!(pk, PublicKey);
1128
1129        let pk_share = PublicKeyShare(pk);
1130        assert_codec!(pk_share, PublicKeyShare);
1131
1132        let sig = sk.sign(b"this is a test");
1133        assert_codec!(sig, Signature);
1134
1135        let sig_share = SignatureShare(sig);
1136        assert_codec!(sig_share, SignatureShare);
1137
1138        let cipher_text = pk.encrypt(b"cipher text");
1139        assert_codec!(cipher_text, Ciphertext);
1140
1141        let dec_share: DecryptionShare = Standard.sample(&mut thread_rng());
1142        assert_codec!(dec_share, DecryptionShare);
1143
1144        let sk_set = SecretKeySet::random(3, &mut thread_rng());
1145        let pk_set = sk_set.public_keys();
1146        assert_codec!(pk_set, PublicKeySet);
1147    }
1148
1149    #[test]
1150    fn test_size() {
1151        assert_eq!(<<G1Affine as GroupEncoding>::Repr as Default>::default().as_ref().len(), PK_SIZE);
1152        assert_eq!(<<G2Affine as GroupEncoding>::Repr as Default>::default().as_ref().len(), SIG_SIZE);
1153    }
1154
1155    #[test]
1156    fn test_zeroize() {
1157        let zero_sk = SecretKey::from_mut(&mut Scalar::zero());
1158
1159        let mut sk = SecretKey::random();
1160        assert_ne!(zero_sk, sk);
1161
1162        sk.zeroize();
1163        assert_eq!(zero_sk, sk);
1164    }
1165
1166    #[test]
1167    fn test_rng_seed() {
1168        let sk1 = SecretKey::random();
1169        let sk2 = SecretKey::random();
1170
1171        assert_ne!(sk1, sk2);
1172        let mut seed = [0u8; 32];
1173        rand::thread_rng().fill_bytes(&mut seed);
1174
1175        let mut rng = ChaChaRng::from_seed(seed);
1176        let sk3: SecretKey = rng.sample(Standard);
1177
1178        let mut rng = ChaChaRng::from_seed(seed);
1179        let sk4: SecretKey = rng.sample(Standard);
1180        assert_eq!(sk3, sk4);
1181    }
1182}