1use crate::field::Field;
2use crate::integer::int_cast;
3use crate::integer::BigIntRing;
4use crate::integer::IntegerRing;
5use crate::ring::*;
6use crate::primitive_int::*;
7use crate::rings::finite::*;
8use crate::divisibility::DivisibilityRingStore;
9use crate::integer::IntegerRingStore;
10use crate::ordered::OrderedRingStore;
11
12use super::int_factor::factor;
13
14#[stability::unstable(feature = "enable")]
15pub fn is_prim_root_of_unity_pow2<R: RingStore>(ring: R, el: &El<R>, log2_n: usize) -> bool {
16 if log2_n == 0 {
17 return ring.is_one(el);
18 }
19 ring.is_neg_one(&ring.pow(ring.clone_el(&el), 1 << (log2_n - 1)))
20}
21
22#[stability::unstable(feature = "enable")]
23pub fn is_root_of_unity<R: RingStore>(ring: R, el: &El<R>, n: usize) -> bool {
24 is_root_of_unity_gen(ring, el, &n.try_into().unwrap(), StaticRing::<i64>::RING)
25}
26
27#[stability::unstable(feature = "enable")]
28pub fn is_root_of_unity_gen<R: RingStore, I: RingStore>(ring: R, el: &El<R>, n: &El<I>, ZZ: I) -> bool
29 where I::Type: IntegerRing
30{
31 assert!(ZZ.is_pos(n));
32 ring.is_one(&ring.pow_gen(ring.clone_el(&el), n, ZZ))
33}
34
35#[stability::unstable(feature = "enable")]
36pub fn is_prim_root_of_unity<R: RingStore>(ring: R, el: &El<R>, n: usize) -> bool {
37 is_prim_root_of_unity_gen(ring, el, &n.try_into().unwrap(), StaticRing::<i64>::RING)
38}
39
40#[stability::unstable(feature = "enable")]
41pub fn is_prim_root_of_unity_gen<R: RingStore, I>(ring: R, el: &El<R>, n: &El<I>, ZZ: I) -> bool
42 where I: RingStore + Copy,
43 I::Type: IntegerRing
44{
45 if !is_root_of_unity_gen(&ring, el, n, ZZ) {
46 return false;
47 }
48 for (p, _) in factor(&ZZ, ZZ.clone_el(n)) {
49 if is_root_of_unity_gen(&ring, el, &ZZ.checked_div(n, &p).unwrap(), ZZ) {
50 return false;
51 }
52 }
53 return true;
54}
55
56#[stability::unstable(feature = "enable")]
57pub fn get_prim_root_of_unity_gen<R, I>(ring: R, n: &El<I>, ZZ: I) -> Option<El<R>>
58 where R: RingStore,
59 R::Type: FiniteRing + Field,
60 I: RingStore + Copy,
61 I::Type: IntegerRing
62{
63 let order = ZZ.sub(ring.size(&ZZ).unwrap(), ZZ.one());
64 let power = ZZ.checked_div(&order, n)?;
65
66 let mut rng = oorandom::Rand64::new(ZZ.default_hash(&ring.size(&ZZ).unwrap()) as u128);
67 let mut current = ring.pow_gen(ring.random_element(|| rng.rand_u64()), &power, ZZ);
68 while !is_prim_root_of_unity_gen(&ring, ¤t, n, ZZ) {
69 current = ring.pow_gen(ring.random_element(|| rng.rand_u64()), &power, ZZ);
70 }
71 debug_assert!(is_prim_root_of_unity_gen(&ring, ¤t, n, ZZ));
72 return Some(current);
73}
74
75pub fn get_prim_root_of_unity<R>(ring: R, n: usize) -> Option<El<R>>
81 where R: RingStore,
82 R::Type: FiniteRing + Field
83{
84 get_prim_root_of_unity_gen(ring, &int_cast(n.try_into().unwrap(), BigIntRing::RING, StaticRing::<i64>::RING), BigIntRing::RING)
85}
86
87pub fn get_prim_root_of_unity_pow2<R>(ring: R, log2_n: usize) -> Option<El<R>>
93 where R: RingStore,
94 R::Type: FiniteRing + Field
95{
96 const ZZ: BigIntRing = BigIntRing::RING;
97 let order = ZZ.sub(ring.size(&ZZ).unwrap(), ZZ.one());
98 let power = ZZ.checked_div(&order, &ZZ.power_of_two(log2_n))?;
99
100 let mut rng = oorandom::Rand64::new(ZZ.default_hash(&ring.size(&ZZ).unwrap()) as u128);
101 let mut current = ring.pow_gen(ring.random_element(|| rng.rand_u64()), &power, ZZ);
102 while !is_prim_root_of_unity_pow2(&ring, ¤t, log2_n) {
103 current = ring.pow_gen(ring.random_element(|| rng.rand_u64()), &power, ZZ);
104 }
105 assert!(is_prim_root_of_unity_pow2(&ring, ¤t, log2_n));
106 return Some(current);
107}
108
109#[cfg(test)]
110use crate::rings::zn::zn_static::{Zn, Fp};
111#[cfg(test)]
112use crate::algorithms::poly_factor::FactorPolyField;
113#[cfg(test)]
114use crate::homomorphism::*;
115#[cfg(test)]
116use crate::algorithms::cyclotomic::cyclotomic_polynomial;
117#[cfg(test)]
118use crate::rings::poly::dense_poly::DensePolyRing;
119#[cfg(test)]
120use crate::rings::poly::PolyRingStore;
121#[cfg(test)]
122use crate::rings::extension::galois_field::GaloisField;
123
124#[test]
125fn test_is_prim_root_of_unity() {
126 let ring = Zn::<17>::RING;
127 assert!(is_prim_root_of_unity_pow2(ring, &ring.int_hom().map(2), 3));
128 assert!(!is_prim_root_of_unity_pow2(ring, &ring.int_hom().map(2), 4));
129 assert!(is_prim_root_of_unity_pow2(ring, &ring.int_hom().map(3), 4));
130
131 let ring = Zn::<101>::RING;
132 assert!(is_prim_root_of_unity(&ring, &ring.int_hom().map(36), 5));
133 assert!(is_prim_root_of_unity(&ring, &ring.int_hom().map(3), 100));
134 assert!(is_prim_root_of_unity(&ring, &ring.int_hom().map(5), 25));
135 assert!(!is_prim_root_of_unity(&ring, &ring.int_hom().map(5), 50));
136 assert!(is_prim_root_of_unity(&ring, &ring.int_hom().map(6), 10));
137 assert!(!is_prim_root_of_unity(&ring, &ring.int_hom().map(6), 50));
138
139 let ring = GaloisField::new(23, 2);
140 assert!(is_prim_root_of_unity(&ring, &ring.int_hom().map(-1), 2));
141 assert!(is_prim_root_of_unity(&ring, &ring.int_hom().map(2), 11));
142 let poly_ring = DensePolyRing::new(&ring, "X");
143 let (factorization, _) = <_ as FactorPolyField>::factor_poly(&poly_ring, &cyclotomic_polynomial(&poly_ring, 16));
144 for (mut factor, _) in factorization {
145 let normalization = poly_ring.base_ring().invert(poly_ring.lc(&factor).unwrap()).unwrap();
146 poly_ring.inclusion().mul_assign_map(&mut factor, normalization);
147 assert!(is_prim_root_of_unity(&ring, poly_ring.coefficient_at(&factor, 0), 16));
148 assert!(is_prim_root_of_unity_pow2(&ring, poly_ring.coefficient_at(&factor, 0), 4));
149 }
150}
151
152#[test]
153fn test_get_prim_root_of_unity() {
154 let ring = Fp::<17>::RING;
155 assert!(is_prim_root_of_unity_pow2(&ring, &get_prim_root_of_unity_pow2(&ring, 4).unwrap(), 4));
156 assert!(get_prim_root_of_unity_pow2(&ring, 5).is_none());
157
158 let ring = Fp::<101>::RING;
159 assert!(is_prim_root_of_unity_pow2(&ring, &get_prim_root_of_unity_pow2(&ring, 2).unwrap(), 2));
160 assert!(is_prim_root_of_unity(&ring, &get_prim_root_of_unity(&ring, 25).unwrap(), 25));
161 assert!(get_prim_root_of_unity_pow2(&ring, 3).is_none());
162 assert!(get_prim_root_of_unity(&ring, 125).is_none());
163
164 let ring = GaloisField::new(23, 2);
165 assert!(is_prim_root_of_unity_pow2(&ring, &get_prim_root_of_unity_pow2(&ring, 4).unwrap(), 4));
166 assert!(get_prim_root_of_unity_pow2(&ring, 5).is_none());
167 assert!(is_prim_root_of_unity(&ring, &get_prim_root_of_unity(&ring, 3).unwrap(), 3));
168
169 let ring = GaloisField::new(17, 16);
170 assert!(is_prim_root_of_unity_pow2(&ring, &get_prim_root_of_unity_pow2(&ring, 4).unwrap(), 4));
171}