feanor_math/algorithms/poly_factor/
extension.rs1use crate::algorithms::poly_factor::FactorPolyField;
2use crate::algorithms::poly_gcd::PolyTFracGCDRing;
3use crate::computation::*;
4use crate::reduce_lift::poly_eval::InterpolationBaseRing;
5use crate::field::*;
6use crate::homomorphism::*;
7use crate::algorithms::resultant::ComputeResultantRing;
8use crate::ordered::OrderedRingStore;
9use crate::pid::EuclideanRing;
10use crate::primitive_int::StaticRing;
11use crate::ring::*;
12use crate::rings::extension::FreeAlgebra;
13use crate::rings::extension::FreeAlgebraStore;
14use crate::rings::poly::dense_poly::DensePolyRing;
15use crate::rings::poly::{PolyRing, PolyRingStore};
16use crate::integer::*;
17use crate::MAX_PROBABILISTIC_REPETITIONS;
18use crate::specialization::FiniteRingSpecializable;
19
20#[stability::unstable(feature = "enable")]
21pub struct ProbablyNotSquarefree;
22
23#[stability::unstable(feature = "enable")]
31pub fn poly_factor_squarefree_extension<P, Controller>(LX: P, f: &El<P>, attempts: usize, controller: Controller) -> Result<Vec<El<P>>, ProbablyNotSquarefree>
32 where P: RingStore,
33 P::Type: PolyRing + EuclideanRing,
34 <<P::Type as RingExtension>::BaseRing as RingStore>::Type: Field + FreeAlgebra + PolyTFracGCDRing,
35 <<<<P::Type as RingExtension>::BaseRing as RingStore>::Type as RingExtension>::BaseRing as RingStore>::Type: PerfectField + PolyTFracGCDRing + FactorPolyField + InterpolationBaseRing + FiniteRingSpecializable + SelfIso,
36 Controller: ComputationController
37{
38 controller.run_computation(format_args!("factor_ring_ext(pdeg={}, extdeg={})", LX.degree(f).unwrap(), LX.base_ring().rank()), |controller| {
39 let L = LX.base_ring();
40 let K = L.base_ring();
41
42 assert!(LX.base_ring().is_one(LX.lc(f).unwrap()));
43
44 let KX = DensePolyRing::new(K, "X");
45 let KXY = DensePolyRing::new(KX.clone(), "Y");
47
48 let Norm = |f: El<P>| {
49 let f_over_KY = <_ as RingStore>::sum(&KXY,
50 LX.terms(&f).map(|(c, i)| {
51 let mut result = L.poly_repr(&KXY, c, KX.inclusion());
52 KXY.inclusion().mul_assign_map(&mut result, KX.pow(KX.indeterminate(), i));
53 result
54 })
55 );
56 let gen_poly = L.generating_poly(&KXY, KX.inclusion());
57
58 return <_ as ComputeResultantRing>::resultant(&KXY, f_over_KY, gen_poly);
59 };
60
61 let ZZbig = BigIntRing::RING;
78 let characteristic = K.characteristic(&ZZbig).unwrap();
79 let bound = LX.degree(f).unwrap() * LX.degree(f).unwrap() * L.rank();
81 assert!(ZZbig.is_zero(&characteristic) || ZZbig.is_geq(&characteristic, &int_cast(bound.try_into().unwrap(), ZZbig, StaticRing::<i64>::RING)));
82
83 let mut rng = oorandom::Rand64::new(1);
84
85 for _ in 0..attempts {
86 let k = StaticRing::<i32>::RING.get_uniformly_random(&bound.try_into().unwrap(), || rng.rand_u64());
87 let lin_transform = LX.from_terms([(L.mul(L.canonical_gen(), L.int_hom().map(k)), 0), (L.one(), 1)].into_iter());
88 let f_transformed = LX.evaluate(f, &lin_transform, &LX.inclusion());
89
90 let norm_f_transformed = Norm(LX.clone_el(&f_transformed));
91 log_progress!(controller, "(norm)");
92 let degree = KX.degree(&norm_f_transformed).unwrap();
93 let squarefree_part = <_ as PolyTFracGCDRing>::squarefree_part(&KX, &norm_f_transformed);
94 log_progress!(controller, "(squarefree)");
95
96 if KX.degree(&squarefree_part).unwrap() == degree {
97 let lin_transform_rev = LX.from_terms([(L.mul(L.canonical_gen(), L.int_hom().map(-k)), 0), (L.one(), 1)].into_iter());
98 let (factorization, _unit) = <_ as FactorPolyField>::factor_poly_with_controller(&KX, &squarefree_part, controller.clone());
99 log_progress!(controller, "(factored)");
100
101 return Ok(factorization.into_iter().map(|(factor, e)| {
102 assert!(e == 1);
103 let f_factor = LX.normalize(<_ as PolyTFracGCDRing>::gcd(&LX, &f_transformed, &LX.lifted_hom(&KX, L.inclusion()).map(factor)));
104 return LX.evaluate(&f_factor, &lin_transform_rev, &LX.inclusion());
105 }).collect());
106 }
107 }
108 return Err(ProbablyNotSquarefree);
109 })
110}
111
112#[stability::unstable(feature = "enable")]
117pub fn poly_factor_extension<P, Controller>(poly_ring: P, f: &El<P>, controller: Controller) -> (Vec<(El<P>, usize)>, El<<P::Type as RingExtension>::BaseRing>)
118 where P: RingStore,
119 P::Type: PolyRing + EuclideanRing,
120 <<P::Type as RingExtension>::BaseRing as RingStore>::Type: FreeAlgebra + PerfectField + FiniteRingSpecializable + PolyTFracGCDRing,
121 <<<<P::Type as RingExtension>::BaseRing as RingStore>::Type as RingExtension>::BaseRing as RingStore>::Type: PerfectField + PolyTFracGCDRing + FactorPolyField + InterpolationBaseRing + FiniteRingSpecializable + SelfIso,
122 Controller: ComputationController
123{
124 let KX = &poly_ring;
125 let K = KX.base_ring();
126
127 assert!(!KX.is_zero(f));
138 let mut result: Vec<(El<P>, usize)> = Vec::new();
139 for (non_irred_factor, k) in <_ as PolyTFracGCDRing>::power_decomposition(KX, f) {
140 for factor in poly_factor_squarefree_extension(KX, &non_irred_factor, MAX_PROBABILISTIC_REPETITIONS, controller.clone()).ok().unwrap() {
141 if let Some((i, _)) = result.iter().enumerate().filter(|(_, f)| KX.eq_el(&f.0, &factor)).next() {
142 result[i].1 += k;
143 } else {
144 result.push((factor, k));
145 }
146 }
147 }
148 return (result, K.clone_el(KX.coefficient_at(f, 0)));
149}