1use crate::pid::*;
2use crate::integer::*;
3use crate::ordered::{OrderedRingStore, OrderedRing};
4use crate::ring::*;
5
6use std::mem::swap;
7use std::cmp::Ordering;
8
9pub fn eea<R>(a: El<R>, b: El<R>, ring: R) -> (El<R>, El<R>, El<R>)
23 where R: RingStore,
24 R::Type: EuclideanRing
25{
26 let (mut a, mut b) = (a, b);
27
28 let (mut sa, mut ta) = (ring.one(), ring.zero());
29 let (mut sb, mut tb) = (ring.zero(), ring.one());
30
31 while !ring.is_zero(&b) {
32 let (quo, rem) = ring.euclidean_div_rem(a, &b);
37 ta = ring.sub(ta, ring.mul_ref(&quo, &tb));
38 sa = ring.sub(sa, ring.mul_ref_snd(quo, &sb));
39 a = rem;
40
41 swap(&mut a, &mut b);
42 swap(&mut sa, &mut sb);
43 swap(&mut ta, &mut tb);
44 }
45 return (sa, ta, a);
46}
47
48#[stability::unstable(feature = "enable")]
55pub fn half_eea<R>(a: El<R>, b: El<R>, ring: R) -> (El<R>, El<R>)
56 where R: RingStore,
57 R::Type: EuclideanRing
58{
59 let (mut a, mut b) = (a, b);
60 let (mut s, mut t) = (ring.one(), ring.zero());
61
62 while !ring.is_zero(&b) {
64 let (q, r) = ring.euclidean_div_rem(a, &b);
65 a = r;
66 ring.sub_assign(&mut s, ring.mul_ref_snd(q, &t));
67 swap(&mut a, &mut b);
68 swap(&mut s, &mut t);
69 }
70 return (s, a);
71}
72
73pub fn signed_eea<R>(fst: El<R>, snd: El<R>, ring: R) -> (El<R>, El<R>, El<R>)
103 where R: RingStore,
104 R::Type: EuclideanRing + OrderedRing
105{
106 if ring.is_zero(&fst) {
107 return match ring.cmp(&snd, &ring.zero()) {
108 Ordering::Equal => (ring.zero(), ring.zero(), ring.zero()),
109 Ordering::Less => (ring.zero(), ring.negate(ring.one()), ring.negate(snd)),
110 Ordering::Greater => (ring.zero(), ring.one(), snd)
111 };
112 }
113 let fst_negative = ring.cmp(&fst, &ring.zero());
114
115 let (s, t, d) = eea(fst, snd, &ring);
116
117 if ring.cmp(&d, &ring.zero()) == fst_negative {
120 return (s, t, d);
121 } else {
122 return (ring.negate(s), ring.negate(t), ring.negate(d));
123 }
124}
125
126pub fn gcd<R>(a: El<R>, b: El<R>, ring: R) -> El<R>
141 where R: RingStore,
142 R::Type: EuclideanRing
143{
144 let (mut a, mut b) = (a, b);
145
146 while !ring.is_zero(&b) {
148 let (_, r) = ring.euclidean_div_rem(a, &b);
149 a = b;
150 b = r;
151 }
152 return a;
153}
154
155pub fn signed_gcd<R>(a: El<R>, b: El<R>, ring: R) -> El<R>
169 where R: RingStore,
170 R::Type: EuclideanRing + OrderedRing
171{
172 let (_, _, d) = signed_eea(a, b, ring);
173 return d;
174}
175
176pub fn signed_lcm<R>(fst: El<R>, snd: El<R>, ring: R) -> El<R>
189 where R: RingStore,
190 R::Type: EuclideanRing + OrderedRing
191{
192 if ring.is_zero(&fst) || ring.is_zero(&snd) {
193 ring.zero()
194 } else {
195 ring.mul(ring.euclidean_div(ring.clone_el(&fst), &signed_gcd(fst, ring.clone_el(&snd), &ring)), snd)
196 }
197}
198
199pub fn lcm<R>(fst: El<R>, snd: El<R>, ring: R) -> El<R>
207 where R: RingStore,
208 R::Type: EuclideanRing
209{
210 if ring.is_zero(&fst) || ring.is_zero(&snd) {
211 ring.zero()
212 } else {
213 ring.euclidean_div(ring.mul_ref(&fst, &snd), &gcd(fst, snd, &ring))
214 }
215}
216
217pub fn inv_crt<I>(a: El<I>, b: El<I>, p: &El<I>, q: &El<I>, ZZ: I) -> El<I>
221 where I: RingStore,
222 I::Type: IntegerRing
223{
224 let (s, t, d) = signed_eea(ZZ.clone_el(p), ZZ.clone_el(q), &ZZ);
225 assert!(ZZ.is_one(&d) || ZZ.is_neg_one(&d));
226 let mut result = ZZ.add(ZZ.prod([a, t, ZZ.clone_el(q)].into_iter()), ZZ.prod([b, s, ZZ.clone_el(p)].into_iter()));
227
228 let n = ZZ.mul_ref(p, q);
229 result = ZZ.euclidean_rem(result, &n);
230 if ZZ.is_neg(&result) {
231 ZZ.add_assign(&mut result, n);
232 }
233 return result;
234}
235
236#[cfg(test)]
237use crate::primitive_int::*;
238
239#[test]
240fn test_gcd() {
241 assert_eq!(3, gcd(15, 6, &StaticRing::<i64>::RING).abs());
242 assert_eq!(3, gcd(6, 15, &StaticRing::<i64>::RING).abs());
243
244 assert_eq!(7, gcd(0, 7, &StaticRing::<i64>::RING).abs());
245 assert_eq!(7, gcd(7, 0, &StaticRing::<i64>::RING).abs());
246 assert_eq!(0, gcd(0, 0, &StaticRing::<i64>::RING).abs());
247
248 assert_eq!(1, gcd(9, 1, &StaticRing::<i64>::RING).abs());
249 assert_eq!(1, gcd(1, 9, &StaticRing::<i64>::RING).abs());
250
251 assert_eq!(1, gcd(13, 300, &StaticRing::<i64>::RING).abs());
252 assert_eq!(1, gcd(300, 13, &StaticRing::<i64>::RING).abs());
253
254 assert_eq!(3, gcd(-15, 6, &StaticRing::<i64>::RING).abs());
255 assert_eq!(3, gcd(6, -15, &StaticRing::<i64>::RING).abs());
256 assert_eq!(3, gcd(-6, -15, &StaticRing::<i64>::RING).abs());
257}
258
259#[test]
260fn test_signed_gcd() {
261 assert_eq!(3, signed_gcd(15, 6, &StaticRing::<i64>::RING));
262 assert_eq!(3, signed_gcd(6, 15, &StaticRing::<i64>::RING));
263
264 assert_eq!(7, signed_gcd(0, 7, &StaticRing::<i64>::RING));
265 assert_eq!(7, signed_gcd(7, 0, &StaticRing::<i64>::RING));
266 assert_eq!(0, signed_gcd(0, 0, &StaticRing::<i64>::RING));
267
268 assert_eq!(1, signed_gcd(9, 1, &StaticRing::<i64>::RING));
269 assert_eq!(1, signed_gcd(1, 9, &StaticRing::<i64>::RING));
270
271 assert_eq!(1, signed_gcd(13, 300, &StaticRing::<i64>::RING));
272 assert_eq!(1, signed_gcd(300, 13, &StaticRing::<i64>::RING));
273
274 assert_eq!(-3, signed_gcd(-15, 6, &StaticRing::<i64>::RING));
275 assert_eq!(3, signed_gcd(6, -15, &StaticRing::<i64>::RING));
276 assert_eq!(-3, signed_gcd(-6, -15, &StaticRing::<i64>::RING));
277}
278
279#[test]
280fn test_eea_sign() {
281 assert_eq!((2, -1, 1), signed_eea(3, 5, &StaticRing::<i64>::RING));
282 assert_eq!((-1, 2, 1), signed_eea(5, 3, &StaticRing::<i64>::RING));
283 assert_eq!((2, 1, -1), signed_eea(-3, 5, &StaticRing::<i64>::RING));
284 assert_eq!((-1, -2, 1), signed_eea(5, -3, &StaticRing::<i64>::RING));
285 assert_eq!((2, 1, 1), signed_eea(3, -5, &StaticRing::<i64>::RING));
286 assert_eq!((-1, -2, -1), signed_eea(-5, 3, &StaticRing::<i64>::RING));
287 assert_eq!((2, -1, -1), signed_eea(-3, -5, &StaticRing::<i64>::RING));
288 assert_eq!((-1, 2, -1), signed_eea(-5, -3, &StaticRing::<i64>::RING));
289 assert_eq!((0, 0, 0), signed_eea(0, 0, &StaticRing::<i64>::RING));
290 assert_eq!((1, 0, 4), signed_eea(4, 0, &StaticRing::<i64>::RING));
291 assert_eq!((0, 1, 4), signed_eea(0, 4, &StaticRing::<i64>::RING));
292 assert_eq!((1, 0, -4), signed_eea(-4, 0, &StaticRing::<i64>::RING));
293 assert_eq!((0, -1, 4), signed_eea(0, -4, &StaticRing::<i64>::RING));
294}
295
296#[test]
297fn test_signed_eea() {
298 assert_eq!((-1, 1, 2), signed_eea(6, 8, &StaticRing::<i64>::RING));
299 assert_eq!((2, -1, 5), signed_eea(15, 25, &StaticRing::<i64>::RING));
300 assert_eq!((4, -7, 2), signed_eea(32, 18, &StaticRing::<i64>::RING));
301}
302
303#[test]
304fn test_signed_lcm() {
305 assert_eq!(24, signed_lcm(6, 8, &StaticRing::<i64>::RING));
306 assert_eq!(24, signed_lcm(-6, 8, &StaticRing::<i64>::RING));
307 assert_eq!(-24, signed_lcm(6, -8, &StaticRing::<i64>::RING));
308 assert_eq!(-24, signed_lcm(-6, -8, &StaticRing::<i64>::RING));
309 assert_eq!(0, signed_lcm(0, 0, &StaticRing::<i64>::RING));
310 assert_eq!(0, signed_lcm(6, 0, &StaticRing::<i64>::RING));
311 assert_eq!(0, signed_lcm(0, 8, &StaticRing::<i64>::RING));
312}