1use std::sync::atomic::AtomicU64;
2
3use crate::algorithms;
4use crate::computation::*;
5use crate::divisibility::*;
6use crate::homomorphism::Homomorphism;
7use crate::ordered::OrderedRingStore;
8use crate::primitive_int::StaticRing;
9use crate::ring::*;
10use crate::rings::finite::*;
11use crate::integer::*;
12use crate::rings::zn::*;
13use crate::pid::PrincipalIdealRingStore;
14use crate::algorithms::eea::signed_gcd;
15use crate::algorithms::sqr_mul;
16use crate::seq::VectorFn;
17use crate::MAX_PROBABILISTIC_REPETITIONS;
18use super::int_factor::is_prime_power;
19
20type Point<R> = (El<R>, El<R>, El<R>);
21
22fn square<R>(Zn: &R, x: &El<R>) -> El<R>
23 where R: RingStore
24{
25 let mut result: <<R as RingStore>::Type as RingBase>::Element = Zn.clone_el(&x);
26 Zn.square(&mut result);
27 return result;
28}
29
30#[allow(unused)]
31fn point_eq<R>(Zn: &R, P: &Point<R>, Q: &Point<R>) -> bool
32 where R: RingStore,
33 R::Type: ZnRing
34{
35 let factor_quo = if !Zn.is_zero(&Q.0) {
36 if Zn.is_zero(&P.0) { return false; }
37 (&P.0, &Q.0)
38 } else if !Zn.is_zero(&Q.1) {
39 if Zn.is_zero(&P.1) { return false; }
40 (&P.1, &Q.1)
41 } else {
42 assert!(!Zn.is_zero(&Q.2));
43 if Zn.is_zero(&P.2) { return false; }
44 (&P.2, &Q.2)
45 };
46 if !Zn.is_unit(&factor_quo.1) {
47 let factor_of_n = signed_gcd(Zn.integer_ring().clone_el(Zn.modulus()), Zn.smallest_positive_lift(Zn.clone_el(&factor_quo.1)), Zn.integer_ring());
48 let Zn_new = zn_big::Zn::new(BigIntRing::RING, int_cast(Zn.integer_ring().checked_div(Zn.modulus(), &factor_of_n).unwrap(), BigIntRing::RING, Zn.integer_ring()));
49 let red_map = ZnReductionMap::new(Zn, &Zn_new).unwrap();
50 if (Zn_new.is_zero(&red_map.map_ref(&Q.0)) && Zn_new.is_zero(&red_map.map_ref(&Q.1)) && Zn_new.is_zero(&red_map.map_ref(&Q.2))) || (Zn_new.is_zero(&red_map.map_ref(&P.0)) && Zn_new.is_zero(&red_map.map_ref(&P.1)) && Zn_new.is_zero(&red_map.map_ref(&P.2))) {
51 if (Zn_new.is_zero(&red_map.map_ref(&P.0)) && Zn_new.is_zero(&red_map.map_ref(&P.1)) && Zn_new.is_zero(&red_map.map_ref(&P.2))) != (Zn_new.is_zero(&red_map.map_ref(&Q.0)) && Zn_new.is_zero(&red_map.map_ref(&Q.1)) && Zn_new.is_zero(&red_map.map_ref(&Q.2))) {
52 return false;
53 }
54 } else if !point_eq(&Zn_new, &(red_map.map_ref(&P.0), red_map.map_ref(&P.1), red_map.map_ref(&P.2)), &(red_map.map_ref(&Q.0), red_map.map_ref(&Q.1), red_map.map_ref(&Q.2))) {
55 return false;
56 }
57
58 let Zn_new = zn_big::Zn::new(BigIntRing::RING, int_cast(factor_of_n, BigIntRing::RING, Zn.integer_ring()));
59 let red_map = ZnReductionMap::new(Zn, &Zn_new).unwrap();
60 if (Zn_new.is_zero(&red_map.map_ref(&Q.0)) && Zn_new.is_zero(&red_map.map_ref(&Q.1)) && Zn_new.is_zero(&red_map.map_ref(&Q.2))) || (Zn_new.is_zero(&red_map.map_ref(&P.0)) && Zn_new.is_zero(&red_map.map_ref(&P.1)) && Zn_new.is_zero(&red_map.map_ref(&P.2))) {
61 if (Zn_new.is_zero(&red_map.map_ref(&P.0)) && Zn_new.is_zero(&red_map.map_ref(&P.1)) && Zn_new.is_zero(&red_map.map_ref(&P.2))) != (Zn_new.is_zero(&red_map.map_ref(&Q.0)) && Zn_new.is_zero(&red_map.map_ref(&Q.1)) && Zn_new.is_zero(&red_map.map_ref(&Q.2))) {
62 return false;
63 }
64 } else if !point_eq(&Zn_new, &(red_map.map_ref(&P.0), red_map.map_ref(&P.1), red_map.map_ref(&P.2)), &(red_map.map_ref(&Q.0), red_map.map_ref(&Q.1), red_map.map_ref(&Q.2))) {
65 return false;
66 }
67 return true;
68 }
69 let factor = Zn.checked_div(&factor_quo.0, &factor_quo.1).unwrap();
70 if !Zn.is_unit(&factor) {
71 return false;
72 }
73 return Zn.eq_el(&P.0, &Zn.mul_ref(&factor, &Q.0)) && Zn.eq_el(&P.1, &Zn.mul_ref(&factor, &Q.1)) && Zn.eq_el(&P.2, &Zn.mul_ref(&factor, &Q.2));
74}
75
76#[inline(never)]
77fn edcurve_add<R>(Zn: &R, d: &El<R>, P: Point<R>, Q: &Point<R>) -> Point<R>
78 where R: RingStore,
79 R::Type: ZnRing
80{
81 let (Px, Py, Pz) = P;
82 let (Qx, Qy, Qz) = Q;
83
84 let PxQx = Zn.mul_ref(&Px, Qx);
85 let PyQy = Zn.mul_ref(&Py, Qy);
86 let PzQz = Zn.mul_ref_snd(Pz, Qz);
87
88 let PzQz_sqr = square(Zn, &PzQz);
89 let dPxPyQxQy = Zn.mul_ref_snd(Zn.mul_ref(&PxQx, &PyQy), d);
90
91 let u1 = Zn.add_ref(&PzQz_sqr, &dPxPyQxQy);
92 let u2 = Zn.sub(PzQz_sqr, dPxPyQxQy);
93
94 let result = (
95 Zn.mul_ref_fst(&PzQz, Zn.mul_ref_snd(Zn.add(Zn.mul_ref_snd(Px, Qy), Zn.mul_ref_snd(Py, Qx)), &u2)),
96 Zn.mul(PzQz, Zn.mul_ref_snd(Zn.sub(PyQy, PxQx), &u1)),
97 Zn.mul(u1, u2),
98 );
99 debug_assert!(is_on_curve(Zn, d, &result));
100 return result;
101}
102
103#[inline(never)]
104fn edcurve_double<R>(Zn: &R, d: &El<R>, P: &Point<R>) -> Point<R>
105 where R: RingStore,
106 R::Type: ZnRing
107{
108 let (Px, Py, Pz) = P;
109
110 let PxPy = Zn.mul_ref(&Px, &Py);
111 let Px_sqr = square(Zn, Px);
112 let Py_sqr = square(Zn, Py);
113 let Pz_sqr = square(Zn, Pz);
114 let Pz_pow4 = square(Zn, &Pz_sqr);
115 let d_PxPy_sqr = Zn.mul_ref_snd(Zn.mul_ref(&Px_sqr, &Py_sqr), d);
116
117 let u1 = Zn.add_ref(&Pz_pow4, &d_PxPy_sqr);
118 let u2 = Zn.sub(Pz_pow4, d_PxPy_sqr);
119
120 let result = (
121 Zn.mul_ref_fst(&Pz_sqr, Zn.mul_ref_snd(Zn.add_ref(&PxPy, &PxPy), &u2)),
122 Zn.mul_ref_fst(&Pz_sqr, Zn.mul_ref_snd(Zn.sub(Py_sqr, Px_sqr), &u1)),
123 Zn.mul(u1, u2),
124 );
125 debug_assert!(is_on_curve(Zn, d, &result));
126 return result;
127}
128
129fn ec_pow<R>(base: &Point<R>, d: &El<R>, power: &El<BigIntRing>, Zn: &R) -> Point<R>
130 where R: RingStore,
131 R::Type: ZnRing
132{
133 let copy_point = |(x, y, z): &Point<R>| (Zn.clone_el(x), Zn.clone_el(y), Zn.clone_el(z));
134 let ZZ = BigIntRing::RING;
135
136 sqr_mul::generic_pow_shortest_chain_table(
137 copy_point(base),
138 power,
139 ZZ,
140 |P| Ok(edcurve_double(Zn, d, &P)),
141 |P, Q| Ok(edcurve_add(Zn, d, copy_point(Q), P)),
142 |P| copy_point(P),
143 (Zn.zero(), Zn.one(), Zn.one())
144 ).unwrap_or_else(|x| x)
145}
146
147fn is_on_curve<R>(Zn: &R, d: &El<R>, P: &Point<R>) -> bool
148 where R: RingStore,
149 R::Type: ZnRing
150{
151 let (x, y, z) = &P;
152 let x_sqr = square(Zn, x);
153 let y_sqr = square(Zn, y);
154 let z_sqr = square(Zn, z);
155 Zn.eq_el(
156 &Zn.mul_ref_snd(Zn.add_ref(&x_sqr, &y_sqr), &z_sqr),
157 &Zn.add(
158 Zn.mul_ref(&z_sqr, &z_sqr),
159 Zn.mul_ref_fst(d, Zn.mul(x_sqr, y_sqr))
160 )
161 )
162}
163
164const POW_COST_CONSTANT: f64 = 0.1;
165
166fn optimize_parameters(ln_p: f64, ln_n: f64) -> (f64, f64) {
170 let pow_cost_constant = POW_COST_CONSTANT;
171 let ln_cost_per_attempt = |ln_B: f64| ln_B + ln_B.ln() + pow_cost_constant * ln_n.ln();
172 let ln_cost_per_attempt_diff = |ln_B: f64| 1. + 1./ln_B;
173 let ln_attempts = |ln_B: f64| {
174 let u = ln_p / ln_B;
175 u * (1. + 2f64.ln()) * u.ln() - u
176 };
177 let ln_attempts_diff = |ln_B: f64| {
178 let u = ln_p / ln_B;
179 let u_diff = -ln_p / (ln_B * ln_B);
180 u_diff * (1. + 2f64.ln()) * u.ln() + u * (1. + 2f64.ln()) * u_diff/u - u_diff
181 };
182 let f = |ln_B: f64| ln_cost_per_attempt(ln_B) - ln_attempts(ln_B);
183 let f_diff = |ln_B: f64| ln_cost_per_attempt_diff(ln_B) - ln_attempts_diff(ln_B);
184
185 let mut ln_B = (ln_p * ln_p.ln()).sqrt();
186 for _ in 0..10 {
187 ln_B = ln_B - f(ln_B) / f_diff(ln_B);
188 }
189 return (ln_B, ln_attempts(ln_B));
190}
191
192fn lenstra_ec_factor_base<R, F, Controller>(Zn: R, log2_p: usize, mut rng: F, controller: Controller) -> Result<Option<El<<R::Type as ZnRing>::IntegerRing>>, Controller::Abort>
196 where R: RingStore + Copy + Send + Sync,
197 El<R>: Send,
198 R::Type: ZnRing + DivisibilityRing,
199 F: FnMut() -> u64 + Send,
200 Controller: ComputationController
201{
202 controller.run_computation(format_args!("ec_factor(log2(n)={}, log2(p)={})", Zn.integer_ring().abs_log2_ceil(Zn.modulus()).unwrap(), log2_p), |controller| {
203
204 let ZZ = BigIntRing::RING;
205 assert!(ZZ.is_leq(&ZZ.power_of_two(log2_p * 2), &Zn.size(&ZZ).unwrap()));
206 let log2_n = ZZ.abs_log2_ceil(&Zn.size(&ZZ).unwrap()).unwrap();
207 let ln_p = log2_p as f64 * 2f64.ln();
208 let (ln_B, ln_attempts) = optimize_parameters(ln_p, log2_n as f64 * 2f64.ln());
209 let attempts = ln_attempts.exp() as usize;
211 log_progress!(controller, "(attempts={})", attempts);
212
213 let log2_B = ln_B / 2f64.ln();
214 assert!(log2_B <= i128::MAX as f64);
215
216 let primes = algorithms::erathostenes::enumerate_primes(&StaticRing::<i128>::RING, &(1i128 << (log2_B as u64)));
217 let power_factorization = primes.iter()
218 .map(|p| (*p, log2_B.ceil() as usize / StaticRing::<i128>::RING.abs_log2_ceil(&p).unwrap()))
219 .collect::<Vec<_>>();
220 let power = ZZ.prod(power_factorization.iter().map(|(p, e)| ZZ.pow(ZZ.coerce(&StaticRing::<i128>::RING, *p), *e)));
221 let power_ref = &power;
222
223 let computation = ShortCircuitingComputation::new();
224
225 let base_rng_value = rng();
226 let rng_seed = AtomicU64::new(1);
227 let rng_seed_ref = &rng_seed;
228
229 computation.handle(controller.clone()).join_many((0..attempts).map_fn(move |_| move |handle: ShortCircuitingComputationHandle<_, _>| {
230 let mut rng = oorandom::Rand64::new(((rng_seed_ref.fetch_add(1, std::sync::atomic::Ordering::Relaxed) as u128) << 64) | base_rng_value as u128);
231 let (x, y) = (Zn.random_element(|| rng.rand_u64()), Zn.random_element(|| rng.rand_u64()));
232 let (x_sqr, y_sqr) = (square(&Zn, &x), square(&Zn, &y));
233 if let Some(d) = Zn.checked_div(&Zn.sub(Zn.add_ref(&x_sqr, &y_sqr), Zn.one()), &Zn.mul(x_sqr, y_sqr)) {
234 let P = (x, y, Zn.one());
235 debug_assert!(is_on_curve(&Zn, &d, &P));
236 let result = ec_pow(&P, &d, power_ref, &Zn).0;
237 if !Zn.is_unit(&result) && !Zn.is_zero(&result) {
238 return Ok(Some(result));
239 }
240 }
241 log_progress!(handle, ".");
242 checkpoint!(handle);
243 return Ok(None);
244 }));
245
246 if let Some(result) = computation.finish()? {
247 return Ok(Some(Zn.integer_ring().ideal_gen(&Zn.smallest_positive_lift(result), Zn.modulus())));
248 } else {
249 log_progress!(controller, "(no_factor)");
250 return Ok(None);
251 }
252 })
253}
254
255#[stability::unstable(feature = "enable")]
271pub fn lenstra_ec_factor_small<R, Controller>(Zn: R, min_factor_bound_log2: usize, repetitions: usize, controller: Controller) -> Result<Option<El<<R::Type as ZnRing>::IntegerRing>>, Controller::Abort>
272 where R: ZnRingStore + DivisibilityRingStore + Copy + Send + Sync,
273 El<R>: Send,
274 R::Type: ZnRing + DivisibilityRing,
275 Controller: ComputationController
276{
277 assert!(algorithms::miller_rabin::is_prime_base(&Zn, 10) == false);
278 assert!(is_prime_power(Zn.integer_ring(), Zn.modulus()).is_none());
279 let mut rng = oorandom::Rand64::new(Zn.integer_ring().default_hash(Zn.modulus()) as u128);
280
281 for log2_size in (16..min_factor_bound_log2).step_by(8) {
282 if let Some(factor) = lenstra_ec_factor_base(Zn, log2_size, || rng.rand_u64(), controller.clone())? {
283 return Ok(Some(factor));
284 }
285 }
286 for _ in 0..repetitions {
287 if let Some(factor) = lenstra_ec_factor_base(Zn, min_factor_bound_log2, || rng.rand_u64(), controller.clone())? {
288 return Ok(Some(factor));
289 }
290 }
291 return Ok(None);
292}
293
294#[stability::unstable(feature = "enable")]
295pub fn lenstra_ec_factor<R, Controller>(Zn: R, controller: Controller) -> Result<El<<R::Type as ZnRing>::IntegerRing>, Controller::Abort>
296 where R: ZnRingStore + DivisibilityRingStore + Copy + Send + Sync,
297 El<R>: Send,
298 R::Type: ZnRing + DivisibilityRing,
299 Controller: ComputationController
300{
301 assert!(algorithms::miller_rabin::is_prime_base(&Zn, 10) == false);
302 assert!(is_prime_power(Zn.integer_ring(), Zn.modulus()).is_none());
303 let ZZ = BigIntRing::RING;
304 let log2_N = ZZ.abs_log2_floor(&Zn.size(&ZZ).unwrap()).unwrap();
305 let mut rng = oorandom::Rand64::new(Zn.integer_ring().default_hash(Zn.modulus()) as u128);
306
307 for log2_size in (16..(log2_N / 2)).step_by(8) {
309 if let Some(factor) = lenstra_ec_factor_base(Zn, log2_size, || rng.rand_u64(), controller.clone())? {
310 return Ok(factor);
311 }
312 }
313 for _ in 0..MAX_PROBABILISTIC_REPETITIONS {
315 if let Some(factor) = lenstra_ec_factor_base(Zn, log2_N / 2, || rng.rand_u64(), controller.clone())? {
316 return Ok(factor);
317 }
318 }
319 unreachable!()
320}
321
322#[cfg(test)]
323use crate::rings::zn::zn_64::Zn;
324#[cfg(test)]
325use std::time::Instant;
326#[cfg(test)]
327use test::Bencher;
328#[cfg(test)]
329use crate::rings::rust_bigint::*;
330
331#[test]
332fn test_ec_factor() {
333 let n = 65537 * 65539;
334 let actual = lenstra_ec_factor(&Zn::new(n as u64), TEST_LOG_PROGRESS).unwrap_or_else(no_error);
335 assert!(actual != 1 && actual != n && n % actual == 0);
336}
337
338#[bench]
339fn bench_ec_factor_mersenne_number_58(bencher: &mut Bencher) {
340 let bits = 58;
341 let n = ((1i64 << bits) + 1) / 5;
342 let ring = Zn::new(n as u64);
343
344 bencher.iter(|| {
345 let p = lenstra_ec_factor(&ring, TEST_LOG_PROGRESS).unwrap_or_else(no_error);
346 assert!(n > 0 && n != 1 && n != p);
347 assert!(n % p == 0);
348 });
349}
350
351#[test]
352#[ignore]
353fn test_ec_factor_large() {
354 let ZZbig = BigIntRing::RING;
355 #[cfg(not(feature = "parallel"))]
356 let controller = TEST_LOG_PROGRESS;
357 #[cfg(feature = "parallel")]
358 let controller = RunMultithreadedLogProgress;
359
360 let n: i128 = 1073741827 * 71316922984999;
361
362 let begin = Instant::now();
363 let p = StaticRing::<i128>::RING.coerce(&ZZbig, lenstra_ec_factor(&zn_big::Zn::new(&ZZbig, ZZbig.coerce(&StaticRing::<i128>::RING, n)), controller.clone()).unwrap_or_else(no_error));
364 let end = Instant::now();
365 println!("Done in {} ms", (end - begin).as_millis());
366 assert!(p == 1073741827 || p == 71316922984999);
367
368 let n: i128 = 1152921504606847009 * 2305843009213693967;
369
370 let begin = Instant::now();
371 let p = StaticRing::<i128>::RING.coerce(&ZZbig, lenstra_ec_factor(&zn_big::Zn::new(&ZZbig, ZZbig.coerce(&StaticRing::<i128>::RING, n)), controller).unwrap_or_else(no_error));
372 let end = Instant::now();
373 println!("Done in {} ms", (end - begin).as_millis());
374 assert!(p == 1152921504606847009 || p == 2305843009213693967);
375}
376
377#[test]
378#[ignore]
379fn test_compute_partial_factorization() {
380 let ZZbig = BigIntRing::RING;
381 let n = int_cast(
382 RustBigintRing::RING.get_ring().parse("5164499756173817179311838344006023748659411585658447025661318713081295244033682389259290706560275662871806343945494986751", 10).unwrap(),
383 ZZbig,
384 RustBigintRing::RING
385 );
386
387 let Zn = zn_big::Zn::new(ZZbig, ZZbig.clone_el(&n));
388 let begin = Instant::now();
389 let factor = lenstra_ec_factor_small(&Zn, 50, 1, TEST_LOG_PROGRESS).unwrap_or_else(no_error).unwrap();
390 let end = Instant::now();
391 println!("Done in {} ms", (end - begin).as_millis());
392 ZZbig.println(&factor);
393 assert!(!ZZbig.is_one(&factor));
394 assert!(!ZZbig.eq_el(&factor, &n));
395 assert!(ZZbig.divides(&n, &factor));
396}