1use std::fmt::Debug;
2use std::marker::PhantomData;
3use std::cell::OnceCell;
4
5use feanor_serde::dependent_tuple::DeserializeSeedDependentTuple;
6use feanor_serde::newtype_struct::*;
7use serde::de::{Error, DeserializeSeed};
8use serde::{Deserializer, Serializer, Serialize, Deserialize};
9
10use crate::reduce_lift::poly_eval::InterpolationBaseRing;
11use crate::divisibility::DivisibilityRing;
12use crate::impl_localpir_wrap_unwrap_homs;
13use crate::impl_localpir_wrap_unwrap_isos;
14use crate::impl_field_wrap_unwrap_homs;
15use crate::impl_field_wrap_unwrap_isos;
16use crate::rings::extension::FreeAlgebraStore;
17use crate::pid::*;
18use crate::specialization::*;
19use crate::integer::*;
20use crate::ordered::OrderedRingStore;
21use crate::ring::*;
22use crate::homomorphism::*;
23use crate::seq::*;
24use crate::delegate::DelegateRing;
25use crate::rings::extension::galois_field::*;
26use crate::rings::zn::*;
27use crate::serialization::*;
28
29pub struct ZnBase<I: RingStore>
77 where I::Type: IntegerRing
78{
79 integer_ring: I,
80 modulus: El<I>,
81 twice_modulus: El<I>,
82 inverse_modulus: El<I>,
83 inverse_modulus_bitshift: usize,
84}
85
86pub type Zn<I> = RingValue<ZnBase<I>>;
91
92impl<I: RingStore> Zn<I>
93 where I::Type: IntegerRing
94{
95 pub fn new(integer_ring: I, modulus: El<I>) -> Self {
96 RingValue::from(ZnBase::new(integer_ring, modulus))
97 }
98}
99
100impl<I: RingStore> ZnBase<I>
101 where I::Type: IntegerRing
102{
103 pub fn new(integer_ring: I, modulus: El<I>) -> Self {
104 assert!(integer_ring.is_geq(&modulus, &integer_ring.int_hom().map(2)));
105
106 let k = integer_ring.abs_log2_ceil(&integer_ring.mul_ref(&modulus, &modulus)).unwrap() + 2;
110 let mod_square_bound = integer_ring.power_of_two(k);
111 let inverse_modulus = integer_ring.euclidean_div(mod_square_bound, &modulus);
112
113 _ = integer_ring.mul_ref_snd(integer_ring.pow(integer_ring.clone_el(&modulus), 2), &inverse_modulus);
115
116 return ZnBase {
117 twice_modulus: integer_ring.add_ref(&modulus, &modulus),
118 integer_ring: integer_ring,
119 modulus: modulus,
120 inverse_modulus: inverse_modulus,
121 inverse_modulus_bitshift: k
122 };
123 }
124
125 fn bounded_reduce(&self, n: &mut El<I>) {
126 debug_assert!(self.integer_ring.is_leq(&n, &self.integer_ring.mul_ref(&self.twice_modulus, &self.twice_modulus)));
127 debug_assert!(!self.integer_ring.is_neg(&n));
128
129 let mut subtract = self.integer_ring.mul_ref(&n, &self.inverse_modulus);
130 self.integer_ring.euclidean_div_pow_2(&mut subtract, self.inverse_modulus_bitshift);
131 self.integer_ring.mul_assign_ref(&mut subtract, &self.modulus);
132 self.integer_ring.sub_assign(n, subtract);
133
134 debug_assert!(self.integer_ring.is_lt(&n, &self.twice_modulus));
135 }
136}
137
138pub struct ZnEl<I: RingStore>(El<I>)
139 where I::Type: IntegerRing;
140
141impl<I> Debug for ZnBase<I>
142 where I: RingStore,
143 I::Type: IntegerRing
144{
145 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
146 write!(f, "Z/{}Z", self.integer_ring().format(self.modulus()))
147 }
148}
149
150impl<I: RingStore> Debug for ZnEl<I>
151 where El<I>: Clone + Debug,
152 I::Type: IntegerRing
153{
154 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
155 f.debug_tuple("ZnEl")
156 .field(&self.0)
157 .finish()
158 }
159}
160
161impl<I: RingStore> Clone for ZnEl<I>
162 where El<I>: Clone,
163 I::Type: IntegerRing
164{
165 fn clone(&self) -> Self {
166 ZnEl(self.0.clone())
167 }
168}
169
170impl<I: RingStore> Copy for ZnEl<I>
171 where El<I>: Copy,
172 I::Type: IntegerRing
173{}
174
175impl<I: RingStore> RingBase for ZnBase<I>
176 where I::Type: IntegerRing
177{
178 type Element = ZnEl<I>;
179
180 fn clone_el(&self, val: &Self::Element) -> Self::Element {
181 ZnEl(self.integer_ring().clone_el(&val.0))
182 }
183
184 fn add_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element) {
185 debug_assert!(self.integer_ring.is_leq(&lhs.0, &self.twice_modulus));
186 debug_assert!(self.integer_ring.is_leq(&rhs.0, &self.twice_modulus));
187
188 self.integer_ring.add_assign_ref(&mut lhs.0, &rhs.0);
189 if self.integer_ring.is_geq(&lhs.0, &self.twice_modulus) {
190 self.integer_ring.sub_assign_ref(&mut lhs.0, &self.twice_modulus);
191 }
192
193 debug_assert!(self.integer_ring.is_leq(&lhs.0, &self.twice_modulus));
194 }
195
196 fn add_assign(&self, lhs: &mut Self::Element, rhs: Self::Element) {
197 debug_assert!(self.integer_ring.is_leq(&lhs.0, &self.twice_modulus));
198 debug_assert!(self.integer_ring.is_leq(&rhs.0, &self.twice_modulus));
199
200 self.integer_ring.add_assign(&mut lhs.0, rhs.0);
201 if self.integer_ring.is_geq(&lhs.0, &self.twice_modulus) {
202 self.integer_ring.sub_assign_ref(&mut lhs.0, &self.twice_modulus);
203 }
204
205 debug_assert!(self.integer_ring.is_leq(&lhs.0, &self.twice_modulus));
206 }
207
208 fn sub_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element) {
209 debug_assert!(self.integer_ring.is_leq(&lhs.0, &self.twice_modulus));
210 debug_assert!(self.integer_ring.is_leq(&rhs.0, &self.twice_modulus));
211
212 self.integer_ring.sub_assign_ref(&mut lhs.0, &rhs.0);
213 if self.integer_ring.is_neg(&lhs.0) {
214 self.integer_ring.add_assign_ref(&mut lhs.0, &self.twice_modulus);
215 }
216
217 debug_assert!(self.integer_ring.is_leq(&lhs.0, &self.twice_modulus));
218 debug_assert!(!self.integer_ring.is_neg(&lhs.0));
219 }
220
221 fn negate_inplace(&self, lhs: &mut Self::Element) {
222 debug_assert!(self.integer_ring.is_leq(&lhs.0, &self.twice_modulus));
223
224 self.integer_ring.negate_inplace(&mut lhs.0);
225 self.integer_ring.add_assign_ref(&mut lhs.0, &self.twice_modulus);
226
227 debug_assert!(self.integer_ring.is_leq(&lhs.0, &self.twice_modulus));
228 debug_assert!(!self.integer_ring.is_neg(&lhs.0));
229 }
230
231 fn mul_assign(&self, lhs: &mut Self::Element, rhs: Self::Element) {
232 debug_assert!(self.integer_ring.is_leq(&lhs.0, &self.twice_modulus));
233 debug_assert!(self.integer_ring.is_leq(&rhs.0, &self.twice_modulus));
234
235 self.integer_ring.mul_assign(&mut lhs.0, rhs.0);
236 self.bounded_reduce(&mut lhs.0);
237 }
238
239 fn mul_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element) {
240 debug_assert!(self.integer_ring.is_leq(&lhs.0, &self.twice_modulus));
241 debug_assert!(self.integer_ring.is_leq(&rhs.0, &self.twice_modulus));
242
243 self.integer_ring.mul_assign_ref(&mut lhs.0, &rhs.0);
244 self.bounded_reduce(&mut lhs.0);
245 }
246
247 fn from_int(&self, value: i32) -> Self::Element {
248 RingRef::new(self).coerce(&StaticRing::<i32>::RING, value)
249 }
250
251 fn eq_el(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool {
252 debug_assert!(self.integer_ring.is_leq(&lhs.0, &self.twice_modulus));
253 debug_assert!(self.integer_ring.is_leq(&rhs.0, &self.twice_modulus));
254
255 if self.integer_ring.eq_el(&lhs.0, &rhs.0) {
256 return true;
257 }
258 let difference = self.integer_ring.abs(self.integer_ring.sub_ref(&lhs.0, &rhs.0));
259 return self.integer_ring.eq_el(&difference, &self.modulus) || self.integer_ring.eq_el(&difference, &self.twice_modulus);
260 }
261
262 fn is_zero(&self, value: &Self::Element) -> bool {
263 debug_assert!(self.integer_ring.is_leq(&value.0, &self.twice_modulus));
264
265 self.integer_ring.is_zero(&value.0) || self.integer_ring.eq_el(&value.0, &self.modulus) || self.integer_ring.eq_el(&value.0, &self.twice_modulus)
266 }
267
268 fn is_one(&self, value: &Self::Element) -> bool {
269 debug_assert!(self.integer_ring.is_leq(&value.0, &self.twice_modulus));
270
271 self.integer_ring.is_one(&value.0) || self.integer_ring.eq_el(&value.0, &self.integer_ring.add_ref_fst(&self.modulus, self.integer_ring.one()))
272 }
273
274 fn is_commutative(&self) -> bool { true }
275 fn is_noetherian(&self) -> bool { true }
276
277 fn dbg_within<'a>(&self, value: &Self::Element, out: &mut std::fmt::Formatter<'a>, _: EnvBindingStrength) -> std::fmt::Result {
278 if self.integer_ring.is_geq(&value.0, &self.modulus) {
279 let reduced_value = self.integer_ring.sub_ref(&value.0, &self.modulus);
280 if self.integer_ring.eq_el(&reduced_value, &self.modulus) {
281 self.integer_ring.get_ring().dbg(&self.integer_ring.zero(), out)
282 } else {
283 self.integer_ring.get_ring().dbg(&reduced_value, out)
284 }
285 } else {
286 self.integer_ring.get_ring().dbg(&value.0, out)
287 }
288 }
289
290 fn characteristic<J: RingStore + Copy>(&self, ZZ: J) -> Option<El<J>>
291 where J::Type: IntegerRing
292 {
293 self.size(ZZ)
294 }
295
296 fn is_approximate(&self) -> bool { false }
297}
298
299impl<I: RingStore> Clone for ZnBase<I>
300 where I: Clone,
301 I::Type: IntegerRing
302{
303 fn clone(&self) -> Self {
304 ZnBase {
305 integer_ring: self.integer_ring.clone(),
306 modulus: self.integer_ring.clone_el(&self.modulus),
307 inverse_modulus: self.integer_ring.clone_el(&self.inverse_modulus),
308 inverse_modulus_bitshift: self.inverse_modulus_bitshift,
309 twice_modulus: self.integer_ring.clone_el(&self.twice_modulus)
310 }
311 }
312}
313
314impl<I: RingStore> InterpolationBaseRing for AsFieldBase<Zn<I>>
315 where I::Type: IntegerRing
316{
317 type ExtendedRingBase<'a> = GaloisFieldBaseOver<RingRef<'a, Self>>
318 where Self: 'a;
319
320 type ExtendedRing<'a> = GaloisFieldOver<RingRef<'a, Self>>
321 where Self: 'a;
322
323 fn in_base<'a, S>(&self, ext_ring: S, el: El<S>) -> Option<Self::Element>
324 where Self: 'a, S: RingStore<Type = Self::ExtendedRingBase<'a>>
325 {
326 let wrt_basis = ext_ring.wrt_canonical_basis(&el);
327 if wrt_basis.iter().skip(1).all(|x| self.is_zero(&x)) {
328 return Some(wrt_basis.at(0));
329 } else {
330 return None;
331 }
332 }
333
334 fn in_extension<'a, S>(&self, ext_ring: S, el: Self::Element) -> El<S>
335 where Self: 'a, S: RingStore<Type = Self::ExtendedRingBase<'a>>
336 {
337 ext_ring.inclusion().map(el)
338 }
339
340 fn interpolation_points<'a>(&'a self, count: usize) -> (Self::ExtendedRing<'a>, Vec<El<Self::ExtendedRing<'a>>>) {
341 let ring = super::generic_impls::interpolation_ring(RingRef::new(self), count);
342 let points = ring.elements().take(count).collect();
343 return (ring, points);
344 }
345}
346impl<I: RingStore> Copy for ZnBase<I>
347 where I: Copy,
348 El<I>: Copy,
349 I::Type: IntegerRing
350{}
351
352impl<I: RingStore> HashableElRing for ZnBase<I>
353 where I::Type: IntegerRing
354{
355 fn hash<H: std::hash::Hasher>(&self, el: &Self::Element, h: &mut H) {
356 self.integer_ring().hash(&self.smallest_positive_lift(self.clone_el(el)), h)
357 }
358}
359
360impl<I: RingStore + Default> FromModulusCreateableZnRing for ZnBase<I>
361 where I::Type: IntegerRing
362{
363 fn from_modulus<F, E>(create_modulus: F) -> Result<Self, E>
364 where F: FnOnce(&Self::IntegerRingBase) -> Result<El<Self::IntegerRing>, E>
365 {
366 let ZZ = I::default();
367 let modulus = create_modulus(ZZ.get_ring())?;
368 Ok(Self::new(ZZ, modulus))
369 }
370}
371
372impl<I: RingStore> DivisibilityRing for ZnBase<I>
373 where I::Type: IntegerRing
374{
375 fn checked_left_div(&self, lhs: &Self::Element, rhs: &Self::Element) -> Option<Self::Element> {
376 super::generic_impls::checked_left_div(RingRef::new(self), lhs, rhs)
377 }
378}
379
380impl<I: RingStore, J: RingStore> CanHomFrom<ZnBase<J>> for ZnBase<I>
381 where I::Type: IntegerRing + CanHomFrom<J::Type>,
382 J::Type: IntegerRing
383{
384 type Homomorphism = <I::Type as CanHomFrom<J::Type>>::Homomorphism;
385
386 fn has_canonical_hom(&self, from: &ZnBase<J>) -> Option<Self::Homomorphism> {
387 let base_hom = <I::Type as CanHomFrom<J::Type>>::has_canonical_hom(self.integer_ring.get_ring(), from.integer_ring.get_ring())?;
388 if self.integer_ring.eq_el(
389 &self.modulus,
390 &<I::Type as CanHomFrom<J::Type>>::map_in(self.integer_ring.get_ring(), from.integer_ring.get_ring(), from.integer_ring().clone_el(&from.modulus), &base_hom)
391 ) {
392 Some(base_hom)
393 } else {
394 None
395 }
396 }
397
398 fn map_in(&self, from: &ZnBase<J>, el: <ZnBase<J> as RingBase>::Element, hom: &Self::Homomorphism) -> Self::Element {
399 ZnEl(<I::Type as CanHomFrom<J::Type>>::map_in(self.integer_ring.get_ring(), from.integer_ring.get_ring(), el.0, hom))
400 }
401}
402
403impl<I: RingStore> CanHomFrom<zn_64::ZnBase> for ZnBase<I>
404 where I::Type: IntegerRing
405{
406 type Homomorphism = <zn_64::ZnBase as CanIsoFromTo<ZnBase<I>>>::Isomorphism;
407
408 fn has_canonical_hom(&self, from: &zn_64::ZnBase) -> Option<Self::Homomorphism> {
409 from.has_canonical_iso(self)
410 }
411
412 fn map_in(&self, from: &zn_64::ZnBase, el: <zn_64::ZnBase as RingBase>::Element, hom: &Self::Homomorphism) -> Self::Element {
413 from.map_out(self, el, hom)
414 }
415}
416
417impl<I: RingStore> CanIsoFromTo<zn_64::ZnBase> for ZnBase<I>
418 where I::Type: IntegerRing
419{
420 type Isomorphism = <zn_64::ZnBase as CanHomFrom<ZnBase<I>>>::Homomorphism;
421
422 fn has_canonical_iso(&self, from: &zn_64::ZnBase) -> Option<Self::Isomorphism> {
423 from.has_canonical_hom(self)
424 }
425
426 fn map_out(&self, from: &zn_64::ZnBase, el: Self::Element, iso: &Self::Isomorphism) -> <zn_64::ZnBase as RingBase>::Element {
427 from.map_in(self, el, iso)
428 }
429}
430
431impl<I: RingStore> PartialEq for ZnBase<I>
432 where I::Type: IntegerRing
433{
434 fn eq(&self, other: &Self) -> bool {
435 self.integer_ring.get_ring() == other.integer_ring.get_ring() && self.integer_ring.eq_el(&self.modulus, &other.modulus)
436 }
437}
438
439impl<I: RingStore, J: RingStore> CanIsoFromTo<ZnBase<J>> for ZnBase<I>
440 where I::Type: IntegerRing + CanIsoFromTo<J::Type>,
441 J::Type: IntegerRing
442{
443 type Isomorphism = <I::Type as CanIsoFromTo<J::Type>>::Isomorphism;
444
445 fn has_canonical_iso(&self, from: &ZnBase<J>) -> Option<Self::Isomorphism> {
446 let base_iso = <I::Type as CanIsoFromTo<J::Type>>::has_canonical_iso(self.integer_ring.get_ring(), from.integer_ring.get_ring())?;
447 if from.integer_ring().eq_el(
448 from.modulus(),
449 &<I::Type as CanIsoFromTo<J::Type>>::map_out(self.integer_ring.get_ring(), from.integer_ring.get_ring(), self.integer_ring().clone_el(self.modulus()), &base_iso)
450 ) {
451 Some(base_iso)
452 } else {
453 None
454 }
455 }
456
457 fn map_out(&self, from: &ZnBase<J>, el: Self::Element, iso: &Self::Isomorphism) -> <ZnBase<J> as RingBase>::Element {
458 ZnEl(<I::Type as CanIsoFromTo<J::Type>>::map_out(self.integer_ring.get_ring(), from.integer_ring.get_ring(), el.0, iso))
459 }
460}
461
462impl<I: RingStore, J: IntegerRing + ?Sized> CanHomFrom<J> for ZnBase<I>
463 where I::Type: IntegerRing,
464 J: CanIsoFromTo<I::Type>
465{
466 type Homomorphism = super::generic_impls::BigIntToZnHom<J, I::Type, ZnBase<I>>;
467
468 fn has_canonical_hom(&self, from: &J) -> Option<Self::Homomorphism> {
469 super::generic_impls::has_canonical_hom_from_bigint(from, self, self.integer_ring.get_ring(), Some(&self.integer_ring.mul_ref(&self.twice_modulus, &self.twice_modulus)))
470 }
471
472 fn map_in(&self, from: &J, el: J::Element, hom: &Self::Homomorphism) -> Self::Element {
473 super::generic_impls::map_in_from_bigint(from, self, self.integer_ring.get_ring(), el, hom, |n| {
474 debug_assert!(self.integer_ring.is_lt(&n, &self.modulus));
475 ZnEl(n)
476 }, |mut n| {
477 debug_assert!(self.integer_ring.is_lt(&n, &self.integer_ring.mul_ref(&self.twice_modulus, &self.twice_modulus)));
478 self.bounded_reduce(&mut n);
479 ZnEl(n)
480 })
481 }
482}
483
484pub struct ZnBaseElementsIter<'a, I>
485 where I: RingStore,
486 I::Type: IntegerRing
487{
488 ring: &'a ZnBase<I>,
489 current: El<I>
490}
491
492impl<'a, I> Clone for ZnBaseElementsIter<'a, I>
493 where I: RingStore,
494 I::Type: IntegerRing
495{
496 fn clone(&self) -> Self {
497 Self { ring: self.ring, current: self.ring.integer_ring().clone_el(&self.current) }
498 }
499}
500
501impl<'a, I> Iterator for ZnBaseElementsIter<'a, I>
502 where I: RingStore,
503 I::Type: IntegerRing
504{
505 type Item = ZnEl<I>;
506
507 fn next(&mut self) -> Option<Self::Item> {
508 if self.ring.integer_ring().is_lt(&self.current, self.ring.modulus()) {
509 let result = self.ring.integer_ring().clone_el(&self.current);
510 self.ring.integer_ring().add_assign(&mut self.current, self.ring.integer_ring().one());
511 return Some(ZnEl(result));
512 } else {
513 return None;
514 }
515 }
516}
517
518impl<I> Serialize for ZnBase<I>
519 where I: RingStore + Serialize,
520 I::Type: IntegerRing + SerializableElementRing
521{
522 fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
523 where S: Serializer
524 {
525 SerializableNewtypeStruct::new("Zn", (self.integer_ring(), SerializeWithRing::new(self.modulus(), self.integer_ring()))).serialize(serializer)
526 }
527}
528
529impl<'de, I> Deserialize<'de> for ZnBase<I>
530 where I: RingStore + Deserialize<'de>,
531 I::Type: IntegerRing + SerializableElementRing
532{
533 fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
534 where D: Deserializer<'de>
535 {
536 let ring_cell = OnceCell::new();
537 let modulus = <_ as DeserializeSeed<'de>>::deserialize(DeserializeSeedNewtypeStruct::new("Zn", DeserializeSeedDependentTuple::new(PhantomData::<I>, |ring| {
538 ring_cell.set(ring).ok().unwrap();
539 DeserializeWithRing::new(ring_cell.get().unwrap())
540 })), deserializer)?;
541 let ring = ring_cell.into_inner().unwrap();
542 return Ok(Zn::new(ring, modulus).into());
543 }
544}
545
546impl<I: RingStore> SerializableElementRing for ZnBase<I>
547 where I::Type: IntegerRing + SerializableElementRing
548{
549 fn deserialize<'de, D>(&self, deserializer: D) -> Result<Self::Element, D::Error>
550 where D: Deserializer<'de>
551 {
552 self.integer_ring().get_ring().deserialize(deserializer)
553 .and_then(|x| if self.integer_ring().is_neg(&x) || self.integer_ring().is_geq(&x, self.modulus()) { Err(Error::custom("ring element value out of bounds for ring Z/nZ")) } else { Ok(x) })
554 .map(|x| self.from_int_promise_reduced(x))
555 }
556
557 fn serialize<S>(&self, el: &Self::Element, serializer: S) -> Result<S::Ok, S::Error>
558 where S: Serializer
559 {
560 self.integer_ring().get_ring().serialize(&self.smallest_positive_lift(self.clone_el(el)), serializer)
561 }
562}
563
564impl<I: RingStore> FiniteRing for ZnBase<I>
565 where I::Type: IntegerRing
566{
567 type ElementsIter<'a> = ZnBaseElementsIter<'a, I>
568 where Self: 'a;
569
570 fn elements<'a>(&'a self) -> ZnBaseElementsIter<'a, I> {
571 ZnBaseElementsIter {
572 ring: self,
573 current: self.integer_ring().zero()
574 }
575 }
576
577 fn random_element<G: FnMut() -> u64>(&self, rng: G) -> <Self as RingBase>::Element {
578 super::generic_impls::random_element(self, rng)
579 }
580
581 fn size<J: RingStore + Copy>(&self, ZZ: J) -> Option<El<J>>
582 where J::Type: IntegerRing
583 {
584 if ZZ.get_ring().representable_bits().is_none() || self.integer_ring().abs_log2_ceil(self.modulus()) < ZZ.get_ring().representable_bits() {
585 Some(int_cast(self.integer_ring().clone_el(self.modulus()), ZZ, self.integer_ring()))
586 } else {
587 None
588 }
589 }
590}
591
592impl<I: RingStore> PrincipalIdealRing for ZnBase<I>
593 where I::Type: IntegerRing
594{
595 fn checked_div_min(&self, lhs: &Self::Element, rhs: &Self::Element) -> Option<Self::Element> {
596 super::generic_impls::checked_div_min(RingRef::new(self), lhs, rhs)
597 }
598
599 fn extended_ideal_gen(&self, lhs: &Self::Element, rhs: &Self::Element) -> (Self::Element, Self::Element, Self::Element) {
600 let (s, t, d) = self.integer_ring().extended_ideal_gen(&lhs.0, &rhs.0);
601 let quo = RingRef::new(self).into_can_hom(self.integer_ring()).ok().unwrap();
602 (quo.map(s), quo.map(t), quo.map(d))
603 }
604}
605
606impl<I> FiniteRingSpecializable for ZnBase<I>
607 where I: RingStore,
608 I::Type: IntegerRing
609{
610 fn specialize<O: FiniteRingOperation<Self>>(op: O) -> O::Output {
611 op.execute()
612 }
613}
614
615impl<I: RingStore> ZnRing for ZnBase<I>
616 where I::Type: IntegerRing
617{
618 type IntegerRingBase = I::Type;
619 type IntegerRing = I;
620
621 fn integer_ring(&self) -> &Self::IntegerRing {
622 &self.integer_ring
623 }
624
625 fn modulus(&self) -> &El<Self::IntegerRing> {
626 &self.modulus
627 }
628
629 fn smallest_positive_lift(&self, mut el: Self::Element) -> El<Self::IntegerRing> {
630 if self.integer_ring.eq_el(&el.0, &self.twice_modulus) {
631 return self.integer_ring.zero();
632 }
633 if self.integer_ring.is_geq(&el.0, &self.modulus) {
634 self.integer_ring.sub_assign_ref(&mut el.0, &self.modulus);
635 }
636 debug_assert!(self.integer_ring.is_lt(&el.0, &self.modulus));
637 return el.0;
638 }
639
640 fn from_int_promise_reduced(&self, x: El<Self::IntegerRing>) -> Self::Element {
641 debug_assert!(!self.integer_ring().is_neg(&x));
642 debug_assert!(self.integer_ring().is_lt(&x, self.modulus()));
643 ZnEl(x)
644 }
645}
646
647impl_field_wrap_unwrap_homs!{ <{I, J}> ZnBase<I>, ZnBase<J> where I: RingStore, I::Type: IntegerRing, J: RingStore, J::Type: IntegerRing }
648impl_field_wrap_unwrap_isos!{ <{I, J}> ZnBase<I>, ZnBase<J> where I: RingStore, I::Type: IntegerRing, J: RingStore, J::Type: IntegerRing }
649impl_localpir_wrap_unwrap_homs!{ <{I, J}> ZnBase<I>, ZnBase<J> where I: RingStore, I::Type: IntegerRing, J: RingStore, J::Type: IntegerRing }
650impl_localpir_wrap_unwrap_isos!{ <{I, J}> ZnBase<I>, ZnBase<J> where I: RingStore, I::Type: IntegerRing, J: RingStore, J::Type: IntegerRing }
651
652#[cfg(test)]
653use crate::integer::BigIntRing;
654#[cfg(test)]
655use crate::rings::rust_bigint::*;
656
657#[test]
658fn test_mul() {
659 const ZZ: BigIntRing = BigIntRing::RING;
660 let Z257 = Zn::new(ZZ, ZZ.int_hom().map(257));
661 let x = Z257.coerce(&ZZ, ZZ.int_hom().map(256));
662 assert_el_eq!(Z257, Z257.one(), Z257.mul_ref(&x, &x));
663}
664
665#[test]
666fn test_project() {
667 const ZZ: StaticRing<i64> = StaticRing::RING;
668 let Z17 = Zn::new(ZZ, 17);
669 for k in 0..289 {
670 assert_el_eq!(Z17, Z17.int_hom().map((289 - k) % 17), Z17.coerce(&ZZ, -k as i64));
671 }
672}
673
674#[test]
675fn test_ring_axioms_znbase() {
676 let ring = Zn::new(StaticRing::<i64>::RING, 63);
677 crate::ring::generic_tests::test_ring_axioms(&ring, ring.elements())
678}
679
680#[test]
681fn test_hash_axioms() {
682 let ring = Zn::new(StaticRing::<i64>::RING, 63);
683 crate::ring::generic_tests::test_hash_axioms(&ring, ring.elements())
684}
685
686#[test]
687fn test_canonical_iso_axioms_zn_big() {
688 let from = Zn::new(StaticRing::<i128>::RING, 7 * 11);
689 let to = Zn::new(BigIntRing::RING, BigIntRing::RING.int_hom().map(7 * 11));
690 crate::ring::generic_tests::test_hom_axioms(&from, &to, from.elements());
691 crate::ring::generic_tests::test_iso_axioms(&from, &to, from.elements());
692 assert!(from.can_hom(&Zn::new(StaticRing::<i64>::RING, 19)).is_none());
693}
694
695#[test]
696fn test_canonical_hom_axioms_static_int() {
697 let from = StaticRing::<i32>::RING;
698 let to = Zn::new(StaticRing::<i128>::RING, 7 * 11);
699 crate::ring::generic_tests::test_hom_axioms(&from, to, 0..=(2 * 7 * 11));
700}
701
702#[test]
703fn test_zn_ring_axioms_znbase() {
704 super::generic_tests::test_zn_axioms(Zn::new(StaticRing::<i64>::RING, 17));
705 super::generic_tests::test_zn_axioms(Zn::new(StaticRing::<i64>::RING, 63));
706}
707
708#[test]
709fn test_zn_map_in_large_int_znbase() {
710 super::generic_tests::test_map_in_large_int(Zn::new(StaticRing::<i64>::RING, 63));
711}
712
713#[test]
714fn test_zn_map_in_small_int() {
715 let ring = Zn::new(StaticRing::<i64>::RING, 257);
716 assert_el_eq!(ring, ring.one(), ring.coerce(&StaticRing::<i8>::RING, 1));
717}
718
719#[test]
720fn test_divisibility_axioms() {
721 let R = Zn::new(StaticRing::<i64>::RING, 17);
722 crate::divisibility::generic_tests::test_divisibility_axioms(&R, R.elements());
723}
724
725#[test]
726fn test_principal_ideal_ring_axioms() {
727 let R = Zn::new(StaticRing::<i64>::RING, 17);
728 crate::pid::generic_tests::test_principal_ideal_ring_axioms(&R, R.elements());
729 let R = Zn::new(StaticRing::<i64>::RING, 63);
730 crate::pid::generic_tests::test_principal_ideal_ring_axioms(&R, R.elements());
731}
732
733#[test]
734fn test_canonical_iso_axioms_as_field() {
735 let R = Zn::new(StaticRing::<i128>::RING, 17);
736 let R2 = R.clone().as_field().ok().unwrap();
737 crate::ring::generic_tests::test_hom_axioms(&R, &R2, R.elements());
738 crate::ring::generic_tests::test_iso_axioms(&R, &R2, R.elements());
739 crate::ring::generic_tests::test_hom_axioms(&R2, &R, R2.elements());
740 crate::ring::generic_tests::test_iso_axioms(&R2, &R, R2.elements());
741}
742
743#[test]
744fn test_canonical_iso_axioms_zn_64() {
745 let R = Zn::new(StaticRing::<i128>::RING, 17);
746 let R2 = zn_64::Zn::new(17);
747 crate::ring::generic_tests::test_hom_axioms(&R, &R2, R.elements());
748 crate::ring::generic_tests::test_iso_axioms(&R, &R2, R.elements());
749 crate::ring::generic_tests::test_hom_axioms(&R2, &R, R2.elements());
750 crate::ring::generic_tests::test_iso_axioms(&R2, &R, R2.elements());
751}
752
753#[test]
754fn test_finite_field_axioms() {
755 crate::rings::finite::generic_tests::test_finite_ring_axioms(&Zn::new(&StaticRing::<i64>::RING, 128));
756 crate::rings::finite::generic_tests::test_finite_ring_axioms(&Zn::new(&StaticRing::<i64>::RING, 15));
757 crate::rings::finite::generic_tests::test_finite_ring_axioms(&Zn::new(&StaticRing::<i128>::RING, 1 << 32));
758}
759
760#[test]
761fn test_serialize() {
762 let ring = Zn::new(&StaticRing::<i64>::RING, 128);
763 crate::serialization::generic_tests::test_serialization(ring, ring.elements())
764}
765#[test]
766fn test_unreduced() {
767 let ZZbig = RustBigintRing::RING;
768 let ring = Zn::new(ZZbig, ZZbig.prod([72057594035352641, 72057594035418113, 72057594036334721, 72057594036945793, ].iter().map(|p| int_cast(*p, ZZbig, StaticRing::<i64>::RING))));
769 let value = ZZbig.get_ring().parse("26959946664284515451292772736873168147996033528710027874998326058050", 10).unwrap();
770
771 let x: ZnEl<RustBigintRing> = ZnEl(value);
772 assert!(ZZbig.is_lt(&x.0, &ring.get_ring().twice_modulus));
774
775 assert!(ring.is_one(&x));
776 assert!(ring.is_one(&ring.mul_ref(&x, &x)));
777 assert!(ring.eq_el(&x, &ring.mul_ref(&x, &x)));
778 assert_eq!("1", format!("{}", ring.format(&x)));
779}
780
781#[test]
782fn test_serialize_deserialize() {
783 crate::serialization::generic_tests::test_serialize_deserialize(Zn::new(StaticRing::<i64>::RING, 128).into());
784 crate::serialization::generic_tests::test_serialize_deserialize(Zn::new(StaticRing::<i64>::RING, 129).into());
785 crate::serialization::generic_tests::test_serialize_deserialize(Zn::new(BigIntRing::RING, BigIntRing::RING.power_of_two(10)).into());
786}