1use crate::algorithms::fft::cooley_tuckey::CooleyTuckeyButterfly;
2use crate::algorithms::fft::radix3::CooleyTukeyRadix3Butterfly;
3use crate::reduce_lift::poly_eval::InterpolationBaseRing;
4use crate::delegate::DelegateRing;
5use crate::delegate::DelegateRingImplFiniteRing;
6use crate::divisibility::*;
7use crate::{impl_eq_based_self_iso, impl_localpir_wrap_unwrap_homs, impl_localpir_wrap_unwrap_isos, impl_field_wrap_unwrap_homs, impl_field_wrap_unwrap_isos};
8use crate::ordered::OrderedRingStore;
9use crate::primitive_int::*;
10use crate::integer::*;
11use crate::pid::*;
12use crate::rings::extension::FreeAlgebraStore;
13use crate::ring::*;
14use crate::rings::extension::galois_field::*;
15use crate::seq::*;
16use crate::serialization::*;
17use crate::algorithms::convolution::KaratsubaHint;
18use crate::algorithms::matmul::ComputeInnerProduct;
19use crate::algorithms::matmul::StrassenHint;
20use crate::specialization::*;
21use crate::homomorphism::*;
22
23use std::marker::PhantomData;
24use std::fmt::Debug;
25
26use feanor_serde::newtype_struct::*;
27use serde::de::{DeserializeSeed, Error};
28use serde::{Deserialize, Deserializer, Serialize, Serializer};
29
30use super::*;
31use super::zn_big;
32
33fn high(x: u128) -> u64 {
34 (x >> 64) as u64
35}
36
37fn low(x: u128) -> u64 {
38 (x & ((1 << 64) - 1)) as u64
39}
40
41fn mulhi(lhs: u64, rhs: u64) -> u64 {
42 high(lhs as u128 * rhs as u128)
43}
44
45fn mullo(lhs: u64, rhs: u64) -> u64 {
46 lhs.wrapping_mul(rhs)
47}
48
49fn reduce_to_half(x: u64, bound: u64) -> u64 {
54 let (result, overflow) = x.overflowing_sub(bound);
55 if overflow {
56 x
57 } else {
58 result
59 }
60}
61
62#[derive(Clone, Copy)]
90pub struct ZnBase {
91 modulus: i64,
92 modulus_half: i64,
93 modulus_times_three: u64,
94 modulus_times_six: u64,
95 inv_modulus: u128
96}
97
98const fn two_pow_128_div(x: u64) -> u128 {
99 let q_high = (1u128 << 64) / (x as u128);
100 let r_high = (1u128 << 64) % (x as u128);
101 let q_low = (r_high << 64) / (x as u128);
102 let result = (q_high << 64) | q_low;
103 debug_assert!(result.wrapping_mul(x as u128) == 0 || result.wrapping_mul(x as u128) >= 0u128.wrapping_sub(x as u128));
104 return result;
105}
106
107impl ZnBase {
108
109 pub const fn new(modulus: u64) -> Self {
110 assert!(modulus > 1);
111 assert!(modulus <= ((1 << 62) / 9));
113 assert!(modulus as u128 * 6 <= u64::MAX as u128);
115 let modulus_i64: i64 = modulus as i64;
116 let inv_modulus = two_pow_128_div(modulus);
117 Self {
120 modulus: modulus_i64,
121 inv_modulus: inv_modulus,
122 modulus_half: (modulus_i64 - 1) / 2 + 1,
123 modulus_times_three: modulus * 3,
124 modulus_times_six: modulus * 6
125 }
126 }
127
128 fn modulus_u64(&self) -> u64 {
129 self.modulus as u64
130 }
131
132 fn repr_bound(&self) -> u64 {
137 self.modulus_times_six
138 }
139
140 fn bounded_reduce(&self, value: u128) -> u64 {
144 debug_assert!(value <= self.repr_bound() as u128 * self.repr_bound() as u128);
145
146 let (in_low, in_high) = (low(value), high(value));
147 let (invmod_low, invmod_high) = (low(self.inv_modulus), high(self.inv_modulus));
148 let approx_quotient = mulhi(in_low, invmod_high) + mulhi(in_high, invmod_low) + mullo(in_high, invmod_high);
151 let result = low(value).wrapping_sub(mullo(approx_quotient, self.modulus_u64()));
152
153 debug_assert!(result < self.modulus_times_three);
154 debug_assert!((value - result as u128) % (self.modulus_u64() as u128) == 0);
155 return result;
156 }
157
158 #[inline(never)]
166 fn bounded_reduce_larger<const FACTOR: usize>(&self, value: u128) -> u64 {
167 assert!(FACTOR == 32);
168 debug_assert!(value <= FACTOR as u128 * self.repr_bound() as u128 * self.repr_bound() as u128);
169
170 let (in_low, in_high) = (low(value), high(value));
171 let invmod_high = high(self.inv_modulus);
172 let approx_quotient = in_high as u128 * invmod_high as u128 + mulhi(in_low, invmod_high) as u128;
174
175 return self.bounded_reduce(value - (approx_quotient * self.modulus as u128));
176 }
177
178 fn from_u64_promise_reduced(&self, value: u64) -> ZnEl {
186 debug_assert!(value <= self.repr_bound());
187 ZnEl(value)
188 }
189
190 fn complete_reduce(&self, mut value: u64) -> u64 {
194 debug_assert!(value <= self.repr_bound());
195 if value >= 4 * self.modulus_u64() {
196 value -= 4 * self.modulus_u64();
197 }
198 if value >= 2 * self.modulus_u64() {
199 value -= 2 * self.modulus_u64();
200 }
201 if value >= self.modulus_u64() {
202 value -= self.modulus_u64();
203 }
204 debug_assert!(value < self.modulus_u64());
205 return value;
206 }
207
208 #[stability::unstable(feature = "enable")]
209 pub fn from_primitive_int<T: PrimitiveInt>(&self, el: T) -> ZnEl {
210 let is_neg = StaticRing::<T>::RING.is_neg(&el);
211 let el_abs = <T as Into<i128>>::into(el).unsigned_abs();
212 if el_abs <= self.modulus_u64() as u128 {
213 if is_neg {
214 self.negate(self.from_u64_promise_reduced(el_abs as u64))
215 } else {
216 self.from_u64_promise_reduced(el_abs as u64)
217 }
218 } else if el_abs <= self.repr_bound() as u128 {
219 if is_neg {
220 self.negate(self.from_u64_promise_reduced(self.bounded_reduce(el_abs)))
221 } else {
222 self.from_u64_promise_reduced(self.bounded_reduce(el_abs))
223 }
224 } else {
225 let el_i128 = <T as Into<i128>>::into(el);
226 if is_neg {
227 self.from_u64_promise_reduced(((el_i128 % self.modulus as i128) as i64 + self.modulus) as u64)
228 } else {
229 self.from_u64_promise_reduced((el_i128 % self.modulus as i128) as u64)
230 }
231 }
232 }
233}
234
235pub type Zn = RingValue<ZnBase>;
240
241impl Zn {
242
243 pub const fn new(modulus: u64) -> Self {
244 RingValue::from(ZnBase::new(modulus))
245 }
246}
247
248#[derive(Clone, Copy, Debug)]
249pub struct ZnEl(u64);
250
251impl PartialEq for ZnBase {
252 fn eq(&self, other: &Self) -> bool {
253 self.modulus == other.modulus
254 }
255}
256
257impl Debug for ZnBase {
258
259 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
260 write!(f, "Z/{}Z", self.modulus)
261 }
262}
263
264impl RingBase for ZnBase {
265
266 type Element = ZnEl;
267
268 fn clone_el(&self, val: &Self::Element) -> Self::Element {
269 *val
270 }
271
272 fn add_assign(&self, lhs: &mut Self::Element, rhs: Self::Element) {
273 debug_assert!(lhs.0 <= self.repr_bound());
274 debug_assert!(rhs.0 <= self.repr_bound());
275 lhs.0 += rhs.0;
276 lhs.0 = reduce_to_half(lhs.0, self.repr_bound());
277 debug_assert!(lhs.0 <= self.repr_bound());
278 }
279
280 fn sub_assign(&self, lhs: &mut Self::Element, rhs: Self::Element) {
281 debug_assert!(lhs.0 <= self.repr_bound());
282 debug_assert!(rhs.0 <= self.repr_bound());
283 let (result, overflow) = lhs.0.overflowing_sub(rhs.0);
284 if overflow {
285 lhs.0 = result.wrapping_add(self.repr_bound());
286 } else {
287 lhs.0 = result;
288 }
289 debug_assert!(lhs.0 <= self.repr_bound());
290 }
291
292 fn negate_inplace(&self, lhs: &mut Self::Element) {
293 debug_assert!(lhs.0 <= self.repr_bound());
294 lhs.0 = self.repr_bound() - lhs.0;
295 }
296
297 fn mul_assign(&self, lhs: &mut Self::Element, rhs: Self::Element) {
298 debug_assert!(lhs.0 <= self.repr_bound());
299 debug_assert!(rhs.0 <= self.repr_bound());
300 lhs.0 = self.bounded_reduce(lhs.0 as u128 * rhs.0 as u128);
301 }
302
303 fn from_int(&self, value: i32) -> Self::Element {
304 self.from_primitive_int(value)
305 }
306
307 fn zero(&self) -> Self::Element {
308 ZnEl(0)
309 }
310
311 fn eq_el(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool {
312 debug_assert!(lhs.0 <= self.repr_bound());
313 debug_assert!(rhs.0 <= self.repr_bound());
314 if lhs.0 > rhs.0 {
315 self.is_zero(&self.from_u64_promise_reduced(lhs.0 - rhs.0))
316 } else {
317 self.is_zero(&self.from_u64_promise_reduced(rhs.0 - lhs.0))
318 }
319 }
320
321 fn is_zero(&self, val: &Self::Element) -> bool {
322 debug_assert!(val.0 <= self.repr_bound());
323 self.complete_reduce(val.0) == 0
324 }
325
326 fn is_commutative(&self) -> bool { true }
327 fn is_noetherian(&self) -> bool { true }
328
329 fn dbg_within<'a>(&self, value: &Self::Element, out: &mut std::fmt::Formatter<'a>, _: EnvBindingStrength) -> std::fmt::Result {
330 write!(out, "{}", self.complete_reduce(value.0))
331 }
332
333 fn characteristic<I: RingStore + Copy>(&self, other_ZZ: I) -> Option<El<I>>
334 where I::Type: IntegerRing
335 {
336 self.size(other_ZZ)
337 }
338
339 fn sum<I>(&self, els: I) -> Self::Element
340 where I: IntoIterator<Item = Self::Element>
341 {
342 let mut result = self.zero();
343 let mut els_it = els.into_iter();
344 while let Some(ZnEl(start)) = els_it.next() {
345 let mut current = start as u128;
346 for ZnEl(c) in els_it.by_ref().take(self.repr_bound() as usize / 2 - 1) {
347 current += c as u128;
348 }
349 self.add_assign(&mut result, self.from_u64_promise_reduced(self.bounded_reduce(current)));
350 }
351 debug_assert!(result.0 <= self.repr_bound());
352 return result;
353 }
354
355 fn pow_gen<R: RingStore>(&self, x: Self::Element, power: &El<R>, integers: R) -> Self::Element
356 where R::Type: IntegerRing
357 {
358 assert!(!integers.is_neg(power));
359 algorithms::sqr_mul::generic_abs_square_and_multiply(
360 x,
361 power,
362 &integers,
363 |mut a| {
364 self.square(&mut a);
365 a
366 },
367 |a, b| self.mul_ref_fst(a, b),
368 self.one()
369 )
370 }
371
372 fn is_approximate(&self) -> bool { false }
373}
374
375impl SerializableElementRing for ZnBase {
376
377 fn deserialize<'de, D>(&self, deserializer: D) -> Result<Self::Element, D::Error>
378 where D: Deserializer<'de>
379 {
380 <i64 as Deserialize>::deserialize(deserializer)
381 .and_then(|x| if x < 0 || x >= *self.modulus() { Err(Error::custom("ring element value out of bounds for ring Z/nZ")) } else { Ok(x) })
382 .map(|x| self.from_int_promise_reduced(x))
383 }
384
385 fn serialize<S>(&self, el: &Self::Element, serializer: S) -> Result<S::Ok, S::Error>
386 where S: Serializer
387 {
388 <i64 as Serialize>::serialize(&self.smallest_positive_lift(*el), serializer)
389 }
390}
391
392impl FromModulusCreateableZnRing for ZnBase {
393
394 fn from_modulus<F, E>(create_modulus: F) -> Result<Self, E>
395 where F: FnOnce(&Self::IntegerRingBase) -> Result<El<Self::IntegerRing>, E>
396 {
397 create_modulus(StaticRing::<i64>::RING.get_ring()).map(|n| Self::new(n as u64))
398 }
399}
400
401impl InterpolationBaseRing for AsFieldBase<Zn> {
402
403 type ExtendedRingBase<'a> = GaloisFieldBaseOver<RingRef<'a, Self>>
404 where Self: 'a;
405
406 type ExtendedRing<'a> = GaloisFieldOver<RingRef<'a, Self>>
407 where Self: 'a;
408
409 fn in_base<'a, S>(&self, ext_ring: S, el: El<S>) -> Option<Self::Element>
410 where Self: 'a, S: RingStore<Type = Self::ExtendedRingBase<'a>>
411 {
412 let wrt_basis = ext_ring.wrt_canonical_basis(&el);
413 if wrt_basis.iter().skip(1).all(|x| self.is_zero(&x)) {
414 return Some(wrt_basis.at(0));
415 } else {
416 return None;
417 }
418 }
419
420 fn in_extension<'a, S>(&self, ext_ring: S, el: Self::Element) -> El<S>
421 where Self: 'a, S: RingStore<Type = Self::ExtendedRingBase<'a>>
422 {
423 ext_ring.inclusion().map(el)
424 }
425
426 fn interpolation_points<'a>(&'a self, count: usize) -> (Self::ExtendedRing<'a>, Vec<El<Self::ExtendedRing<'a>>>) {
427 let ring = super::generic_impls::interpolation_ring(RingRef::new(self), count);
428 let points = ring.elements().take(count).collect();
429 return (ring, points);
430 }
431}
432
433impl ComputeInnerProduct for ZnBase {
434
435 fn inner_product<I: Iterator<Item = (Self::Element, Self::Element)>>(&self, els: I) -> Self::Element {
436
437 debug_assert!(u128::MAX / (self.repr_bound() as u128 * self.repr_bound() as u128) >= 36);
438 const REDUCE_AFTER_STEPS: usize = 32;
439 let mut array_chunks = els.array_chunks::<REDUCE_AFTER_STEPS>();
440 let mut result = self.zero();
441 while let Some(chunk) = array_chunks.next() {
442 let mut sum: u128 = 0;
443 for (l, r) in chunk {
444 debug_assert!(l.0 <= self.repr_bound());
445 debug_assert!(r.0 <= self.repr_bound());
446 sum += l.0 as u128 * r.0 as u128;
447 }
448 self.add_assign(&mut result, ZnEl(self.bounded_reduce_larger::<REDUCE_AFTER_STEPS>(sum)));
449 }
450 let mut sum: u128 = 0;
451 for (l, r) in array_chunks.into_remainder() {
452 debug_assert!(l.0 <= self.repr_bound());
453 debug_assert!(r.0 <= self.repr_bound());
454 sum += l.0 as u128 * r.0 as u128;
455 }
456 self.add_assign(&mut result, ZnEl(self.bounded_reduce_larger::<REDUCE_AFTER_STEPS>(sum)));
457 return result;
458 }
459
460 fn inner_product_ref_fst<'a, I: Iterator<Item = (&'a Self::Element, Self::Element)>>(&self, els: I) -> Self::Element
461 where Self::Element: 'a
462 {
463 self.inner_product(els.map(|(l, r)| (self.clone_el(l), r)))
464 }
465
466 fn inner_product_ref<'a, I: Iterator<Item = (&'a Self::Element, &'a Self::Element)>>(&self, els: I) -> Self::Element
467 where Self::Element: 'a
468 {
469 self.inner_product_ref_fst(els.map(|(l, r)| (l, self.clone_el(r))))
470 }
471}
472
473impl_eq_based_self_iso!{ ZnBase }
474
475impl<I: RingStore> CanHomFrom<zn_big::ZnBase<I>> for ZnBase
476 where I::Type: IntegerRing
477{
478 type Homomorphism = ();
479
480 fn has_canonical_hom(&self, from: &zn_big::ZnBase<I>) -> Option<Self::Homomorphism> {
481 if from.integer_ring().get_ring().representable_bits().is_none() || from.integer_ring().get_ring().representable_bits().unwrap() >= self.integer_ring().abs_log2_ceil(self.modulus()).unwrap() {
482 if from.integer_ring().eq_el(from.modulus(), &int_cast(*self.modulus(), from.integer_ring(), self.integer_ring())) {
483 Some(())
484 } else {
485 None
486 }
487 } else {
488 None
489 }
490 }
491
492 fn map_in(&self, from: &zn_big::ZnBase<I>, el: <zn_big::ZnBase<I> as RingBase>::Element, _: &Self::Homomorphism) -> Self::Element {
493 self.from_u64_promise_reduced(int_cast(from.smallest_positive_lift(el), self.integer_ring(), from.integer_ring()) as u64)
494 }
495}
496
497impl<I: RingStore> CanIsoFromTo<zn_big::ZnBase<I>> for ZnBase
498 where I::Type: IntegerRing
499{
500 type Isomorphism = <zn_big::ZnBase<I> as CanHomFrom<StaticRingBase<i64>>>::Homomorphism;
501
502 fn has_canonical_iso(&self, from: &zn_big::ZnBase<I>) -> Option<Self::Isomorphism> {
503 if from.integer_ring().get_ring().representable_bits().is_none() || from.integer_ring().get_ring().representable_bits().unwrap() >= self.integer_ring().abs_log2_ceil(self.modulus()).unwrap() {
504 if from.integer_ring().eq_el(from.modulus(), &int_cast(*self.modulus(), from.integer_ring(), self.integer_ring())) {
505 from.has_canonical_hom(self.integer_ring().get_ring())
506 } else {
507 None
508 }
509 } else {
510 None
511 }
512 }
513
514 fn map_out(&self, from: &zn_big::ZnBase<I>, el: <Self as RingBase>::Element, iso: &Self::Isomorphism) -> <zn_big::ZnBase<I> as RingBase>::Element {
515 from.map_in(self.integer_ring().get_ring(), el.0.try_into().unwrap(), iso)
516 }
517}
518
519#[derive(Copy, Clone, Debug)]
524pub struct ZnPreparedDivisorData {
525 unit_part: El<Zn>,
526 is_unit: bool,
527 smallest_positive_zero_divisor_part: PreparedDivisor<StaticRingBase<i64>>
528}
529
530impl DivisibilityRing for ZnBase {
531
532 type PreparedDivisorData = ZnPreparedDivisorData;
533
534 fn checked_left_div(&self, lhs: &Self::Element, rhs: &Self::Element) -> Option<Self::Element> {
535 super::generic_impls::checked_left_div(RingRef::new(self), lhs, rhs)
536 }
537
538 fn prepare_divisor(&self, x: &Self::Element) -> Self::PreparedDivisorData {
539 let (s, _t, d) = algorithms::eea::signed_eea(self.smallest_positive_lift(*x), *self.modulus(), self.integer_ring());
540 debug_assert!(d > 0);
541 debug_assert!(d <= *self.modulus());
542 return ZnPreparedDivisorData {
543 is_unit: d == 1,
544 unit_part: if s < 0 { self.negate(self.from_u64_promise_reduced(-s as u64)) } else { self.from_u64_promise_reduced(s as u64) },
545 smallest_positive_zero_divisor_part: PreparedDivisor::new(StaticRing::<i64>::RING.get_ring(), d)
546 };
547 }
548
549 fn checked_left_div_prepared(&self, lhs: &Self::Element, _rhs: &Self::Element, rhs_prep: &Self::PreparedDivisorData) -> Option<Self::Element> {
550 if rhs_prep.is_unit {
551 Some(self.mul_ref(lhs, &rhs_prep.unit_part))
552 } else {
553 StaticRing::<i64>::RING.get_ring().checked_left_div_prepared(&self.smallest_positive_lift(*lhs), &rhs_prep.smallest_positive_zero_divisor_part.element, &rhs_prep.smallest_positive_zero_divisor_part.data)
554 .map(|x| self.mul(self.from_u64_promise_reduced(x as u64), rhs_prep.unit_part))
555 }
556 }
557}
558
559impl<I: ?Sized + IntegerRing> CanHomFrom<I> for ZnBase {
560
561 type Homomorphism = super::generic_impls::BigIntToZnHom<I, StaticRingBase<i128>, Self>;
562
563 default fn has_canonical_hom(&self, from: &I) -> Option<Self::Homomorphism> {
564 super::generic_impls::has_canonical_hom_from_bigint(from, self, StaticRing::<i128>::RING.get_ring(), Some(&(self.repr_bound() as i128 * self.repr_bound() as i128)))
565 }
566
567 default fn map_in(&self, from: &I, el: I::Element, hom: &Self::Homomorphism) -> Self::Element {
568 super::generic_impls::map_in_from_bigint(from, self, StaticRing::<i128>::RING.get_ring(), el, hom, |n| {
569 debug_assert!((n as u64) < self.modulus_u64());
570 self.from_u64_promise_reduced(n as u64)
571 }, |n| {
572 debug_assert!(n <= (self.repr_bound() as i128 * self.repr_bound() as i128));
573 self.from_u64_promise_reduced(self.bounded_reduce(n as u128))
574 })
575 }
576}
577
578impl Serialize for ZnBase {
579 fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
580 where S: Serializer
581 {
582 SerializableNewtypeStruct::new("Zn", *self.modulus()).serialize(serializer)
583 }
584}
585
586impl<'de> Deserialize<'de> for ZnBase {
587 fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
588 where D: Deserializer<'de>
589 {
590 DeserializeSeedNewtypeStruct::new("Zn", PhantomData::<i64>).deserialize(deserializer).map(|n| ZnBase::new(n as u64))
591 }
592}
593
594macro_rules! impl_static_int_to_zn {
595 ($($int:ident),*) => {
596 $(
597 impl CanHomFrom<StaticRingBase<$int>> for ZnBase {
598 fn map_in(&self, _from: &StaticRingBase<$int>, el: $int, _hom: &Self::Homomorphism) -> Self::Element {
599 self.from_primitive_int(el)
600 }
601 }
602 )*
603 };
604}
605
606impl_static_int_to_zn!{ i8, i16, i32, i64, i128 }
607
608#[derive(Clone, Copy)]
609pub struct ZnBaseElementsIter<'a> {
610 ring: &'a ZnBase,
611 current: u64
612}
613
614impl<'a> Iterator for ZnBaseElementsIter<'a> {
615
616 type Item = ZnEl;
617
618 fn next(&mut self) -> Option<Self::Item> {
619 if self.current < self.ring.modulus_u64() {
620 let result = self.current;
621 self.current += 1;
622 return Some(self.ring.from_u64_promise_reduced(result));
623 } else {
624 return None;
625 }
626 }
627}
628
629impl FiniteRingSpecializable for ZnBase {
630 fn specialize<O: FiniteRingOperation<Self>>(op: O) -> O::Output {
631 op.execute()
632 }
633}
634
635impl FiniteRing for ZnBase {
636
637 type ElementsIter<'a> = ZnBaseElementsIter<'a>;
638
639 fn elements<'a>(&'a self) -> Self::ElementsIter<'a> {
640 ZnBaseElementsIter {
641 ring: self,
642 current: 0
643 }
644 }
645
646 fn random_element<G: FnMut() -> u64>(&self, rng: G) -> <Self as RingBase>::Element {
647 super::generic_impls::random_element(self, rng)
648 }
649
650 fn size<I: RingStore + Copy>(&self, other_ZZ: I) -> Option<El<I>>
651 where I::Type: IntegerRing
652 {
653 if other_ZZ.get_ring().representable_bits().is_none() || self.integer_ring().abs_log2_ceil(&(self.modulus() + 1)) <= other_ZZ.get_ring().representable_bits() {
654 Some(int_cast(*self.modulus(), other_ZZ, self.integer_ring()))
655 } else {
656 None
657 }
658 }
659}
660
661impl PrincipalIdealRing for ZnBase {
662
663 fn checked_div_min(&self, lhs: &Self::Element, rhs: &Self::Element) -> Option<Self::Element> {
664 super::generic_impls::checked_div_min(RingRef::new(self), lhs, rhs)
665 }
666
667 fn extended_ideal_gen(&self, lhs: &Self::Element, rhs: &Self::Element) -> (Self::Element, Self::Element, Self::Element) {
668 let (s, t, d) = StaticRing::<i64>::RING.extended_ideal_gen(&lhs.0.try_into().unwrap(), &rhs.0.try_into().unwrap());
669 let quo = RingRef::new(self).into_can_hom(StaticRing::<i64>::RING).ok().unwrap();
670 (quo.map(s), quo.map(t), quo.map(d))
671 }
672}
673
674impl StrassenHint for ZnBase {
675 default fn strassen_threshold(&self) -> usize {
676 6
677 }
678}
679
680impl KaratsubaHint for ZnBase {
681 default fn karatsuba_threshold(&self) -> usize {
682 6
683 }
684}
685
686impl ZnRing for ZnBase {
687
688 type IntegerRingBase = StaticRingBase<i64>;
689 type IntegerRing = StaticRing<i64>;
690
691 fn integer_ring(&self) -> &Self::IntegerRing {
692 &StaticRing::<i64>::RING
693 }
694
695 fn smallest_positive_lift(&self, el: Self::Element) -> El<Self::IntegerRing> {
696 self.complete_reduce(el.0) as i64
697 }
698
699 fn smallest_lift(&self, ZnEl(mut value_u64): Self::Element) -> El<Self::IntegerRing> {
700 debug_assert!(value_u64 <= self.repr_bound());
701 if value_u64 >= 3 * self.modulus_u64() {
703 value_u64 -= 3 * self.modulus_u64();
704 }
705 let mut value_i64 = value_u64 as i64;
707 if value_i64 >= self.modulus + self.modulus_half {
708 value_i64 -= 2 * self.modulus;
709 }
710 if value_i64 >= self.modulus_half {
713 value_i64 -= self.modulus;
714 }
715 debug_assert!(value_i64 < self.modulus_half);
718 debug_assert!(self.modulus() % 2 == 0 || value_i64 > -self.modulus_half);
719 debug_assert!(self.modulus() % 2 == 1 || value_i64 >= -self.modulus_half);
720 return value_i64;
721 }
722
723 fn modulus(&self) -> &El<Self::IntegerRing> {
724 &self.modulus
725 }
726
727 fn any_lift(&self, el: Self::Element) -> El<Self::IntegerRing> {
728 el.0 as i64
729 }
730
731 fn from_int_promise_reduced(&self, x: El<Self::IntegerRing>) -> Self::Element {
758 debug_assert!(self.repr_bound() == 6 * self.modulus_u64());
759 debug_assert!(x >= 0);
760 debug_assert!(x as u64 <= self.repr_bound());
761 self.from_u64_promise_reduced(x as u64)
762 }
763}
764
765impl HashableElRing for ZnBase {
766
767 fn hash<H: std::hash::Hasher>(&self, el: &Self::Element, h: &mut H) {
768 self.integer_ring().hash(&self.smallest_positive_lift(*el), h)
769 }
770}
771
772#[derive(Clone, Copy, Debug)]
800pub struct ZnFastmulBase {
801 base: RingValue<ZnBase>
802}
803
804pub type ZnFastmul = RingValue<ZnFastmulBase>;
809
810impl ZnFastmul {
811
812 pub fn new(base: Zn) -> Option<Self> {
813 Some(RingValue::from(ZnFastmulBase { base }))
814 }
815}
816
817impl PartialEq for ZnFastmulBase {
818
819 fn eq(&self, other: &Self) -> bool {
820 self.base.get_ring() == other.base.get_ring()
821 }
822}
823
824impl PrincipalIdealRing for ZnFastmulBase {
825
826 fn checked_div_min(&self, lhs: &Self::Element, rhs: &Self::Element) -> Option<Self::Element> {
827 let result = self.get_delegate().checked_div_min(self.delegate_ref(lhs), self.delegate_ref(rhs));
828 result.map(|x| self.rev_delegate(x))
829 }
830
831 fn extended_ideal_gen(&self, lhs: &Self::Element, rhs: &Self::Element) -> (Self::Element, Self::Element, Self::Element) {
832 let (s, t, d) = self.get_delegate().extended_ideal_gen(self.delegate_ref(lhs), self.delegate_ref(rhs));
833 (self.rev_delegate(s), self.rev_delegate(t), self.rev_delegate(d))
834 }
835}
836
837impl_eq_based_self_iso!{ ZnFastmulBase }
838
839#[derive(Clone, Copy, Debug)]
840pub struct ZnFastmulEl {
841 el: ZnEl,
842 value_invmod_shifted: u64
843}
844
845impl DelegateRing for ZnFastmulBase {
846
847 type Base = ZnBase;
848 type Element = ZnFastmulEl;
849
850 fn get_delegate(&self) -> &Self::Base {
851 self.base.get_ring()
852 }
853
854 fn delegate(&self, el: Self::Element) -> <Self::Base as RingBase>::Element {
855 el.el
856 }
857
858 fn delegate_mut<'a>(&self, el: &'a mut Self::Element) -> &'a mut <Self::Base as RingBase>::Element {
859 &mut el.el
860 }
861
862 fn delegate_ref<'a>(&self, el: &'a Self::Element) -> &'a <Self::Base as RingBase>::Element {
863 &el.el
864 }
865
866 fn postprocess_delegate_mut(&self, el: &mut Self::Element) {
867 assert!(el.el.0 <= self.base.get_ring().repr_bound());
868 el.el.0 = self.base.get_ring().complete_reduce(el.el.0);
869 let value = el.el.0;
870 el.value_invmod_shifted = (((value as u128) << 64) / self.base.get_ring().modulus_u64() as u128) as u64;
871 }
872
873 fn rev_delegate(&self, el: <Self::Base as RingBase>::Element) -> Self::Element {
874 let mut result = ZnFastmulEl {
875 el: el,
876 value_invmod_shifted: 0
877 };
878 self.postprocess_delegate_mut(&mut result);
879 return result;
880 }
881}
882
883impl DelegateRingImplFiniteRing for ZnFastmulBase {}
884
885impl CanHomFrom<ZnBase> for ZnFastmulBase {
886
887 type Homomorphism = ();
888
889 fn has_canonical_hom(&self, from: &ZnBase) -> Option<Self::Homomorphism> {
890 if from == self.base.get_ring() {
891 Some(())
892 } else {
893 None
894 }
895 }
896
897 fn map_in(&self, _from: &ZnBase, el: <ZnBase as RingBase>::Element, _hom: &Self::Homomorphism) -> Self::Element {
898 self.rev_delegate(el)
899 }
900}
901
902impl CanHomFrom<ZnFastmulBase> for ZnBase {
903
904 type Homomorphism = ();
905
906 fn has_canonical_hom(&self, from: &ZnFastmulBase) -> Option<Self::Homomorphism> {
907 if self == from.base.get_ring() {
908 Some(())
909 } else {
910 None
911 }
912 }
913
914 fn map_in(&self, _from: &ZnFastmulBase, el: <ZnFastmulBase as RingBase>::Element, _hom: &Self::Homomorphism) -> Self::Element {
915 el.el
916 }
917
918 fn mul_assign_map_in(&self, _from: &ZnFastmulBase, lhs: &mut Self::Element, rhs: <ZnFastmulBase as RingBase>::Element, _hom: &Self::Homomorphism) {
919 debug_assert!(lhs.0 <= self.repr_bound());
920 let lhs_original = lhs.0;
921 let product = mullo(lhs.0, rhs.el.0);
922 let approx_quotient = mulhi(lhs.0, rhs.value_invmod_shifted);
923 lhs.0 = product.wrapping_sub(mullo(approx_quotient, self.modulus_u64()));
924 debug_assert!(lhs.0 < self.modulus_times_three);
925 debug_assert!((lhs_original as u128 * rhs.el.0 as u128 - lhs.0 as u128) % (self.modulus_u64() as u128) == 0);
926 }
927
928 fn mul_assign_map_in_ref(&self, from: &ZnFastmulBase, lhs: &mut Self::Element, rhs: &<ZnFastmulBase as RingBase>::Element, hom: &Self::Homomorphism) {
929 self.mul_assign_map_in(from, lhs, *rhs, hom);
930 }
931}
932
933impl CanIsoFromTo<ZnFastmulBase> for ZnBase {
934
935 type Isomorphism = <ZnFastmulBase as CanHomFrom<Self>>::Homomorphism;
936
937 fn has_canonical_iso(&self, from: &ZnFastmulBase) -> Option<Self::Isomorphism> {
938 from.has_canonical_hom(self)
939 }
940
941 fn map_out(&self, from: &ZnFastmulBase, el: Self::Element, iso: &Self::Isomorphism) -> <ZnFastmulBase as RingBase>::Element {
942 from.map_in(self, el, iso)
943 }
944}
945
946impl CooleyTuckeyButterfly<ZnFastmulBase> for ZnBase {
947
948 #[inline(always)]
949 fn butterfly_new<H: Homomorphism<ZnFastmulBase, Self>>(hom: H, a: &mut ZnEl, b: &mut ZnEl, twiddle: &<ZnFastmulBase as RingBase>::Element) {
950 let self_ = hom.codomain().get_ring();
951
952 a.0 = reduce_to_half(a.0, self_.modulus_times_three);
953 hom.mul_assign_ref_map(b, twiddle);
954
955 (a.0, b.0) = (a.0 + b.0, a.0 + self_.modulus_times_three - b.0);
956 }
957
958 #[inline(always)]
959 fn inv_butterfly_new<H: Homomorphism<ZnFastmulBase, Self>>(hom: H, a: &mut ZnEl, b: &mut ZnEl, twiddle: &<ZnFastmulBase as RingBase>::Element) {
960 let self_ = hom.codomain().get_ring();
961
962 (a.0, b.0) = (a.0 + b.0, a.0 + self_.modulus_times_three - b.0);
965 a.0 = reduce_to_half(a.0, self_.modulus_times_three);
966 hom.mul_assign_ref_map(b, twiddle);
967 }
968
969 #[inline(always)]
970 fn prepare_for_inv_fft(&self, value: &mut Self::Element) {
971 if value.0 >= self.modulus_times_three {
972 value.0 -= self.modulus_times_three;
973 }
974 }
975}
976
977impl CooleyTukeyRadix3Butterfly<ZnFastmulBase> for ZnBase {
978
979 fn butterfly<H: Homomorphism<ZnFastmulBase, Self>>(
980 hom: H,
981 a: &mut Self::Element,
982 b: &mut Self::Element,
983 c: &mut Self::Element,
984 z: &ZnFastmulEl,
985 t: &ZnFastmulEl,
986 t_sqr_z_sqr: &ZnFastmulEl
987 ) {
988 let self_ = hom.codomain().get_ring();
989
990 hom.mul_assign_ref_map(b, t);
991 hom.mul_assign_ref_map(c, t_sqr_z_sqr);
992 let b_ = hom.mul_ref_map(b, z);
993 let c_ = hom.mul_ref_map(c, z);
994
995 let mut s1 = b.0 + c_.0;
996 let mut s2 = b_.0 + c.0;
997 a.0 = reduce_to_half(a.0, self_.modulus_times_three);
998 s1 = reduce_to_half(s1, self_.modulus_times_three);
999 s2 = reduce_to_half(s2, self_.modulus_times_three);
1000
1001 let mut s3 = s1 + s2;
1002 s3 = reduce_to_half(s3, self_.modulus_times_three);
1003
1004 b.0 = a.0 + s2;
1005 c.0 = a.0 + self_.modulus_times_three - s3;
1006 a.0 = a.0 + s1;
1007 }
1008
1009 fn inv_butterfly<H: Homomorphism<ZnFastmulBase, Self>>(
1010 hom: H,
1011 a: &mut Self::Element,
1012 b: &mut Self::Element,
1013 c: &mut Self::Element,
1014 z: &ZnFastmulEl,
1015 t: &ZnFastmulEl,
1016 t_sqr: &ZnFastmulEl
1017 ) {
1018 let self_ = hom.codomain().get_ring();
1019
1020 let b_ = hom.mul_ref_map(b, z);
1023 let mut s1 = b.0 + c.0;
1024 s1 = reduce_to_half(s1, self_.modulus_times_three);
1025
1026 let s2 = b_.0 + c.0;
1027 let s2_ = hom.mul_ref_snd_map(self_.from_u64_promise_reduced(s2), z);
1028
1029 let mut s3 = s1 + s2_.0;
1030 s3 = reduce_to_half(s3, self_.modulus_times_three);
1031
1032 b.0 = a.0 + s2_.0;
1033 c.0 = a.0 + self_.modulus_times_three - s3;
1034 a.0 = a.0 + s1;
1035
1036 a.0 = reduce_to_half(a.0, self_.modulus_times_three);
1037 hom.mul_assign_ref_map(b, t);
1038 hom.mul_assign_ref_map(c, t_sqr);
1039 }
1040
1041 #[inline(always)]
1042 fn prepare_for_fft(&self, _value: &mut Self::Element) {}
1043
1044 #[inline(always)]
1045 fn prepare_for_inv_fft(&self, value: &mut Self::Element) {
1046 if value.0 >= self.modulus_times_three {
1047 value.0 -= self.modulus_times_three
1048 }
1049 }
1050}
1051
1052impl CooleyTuckeyButterfly<ZnBase> for ZnBase {
1053
1054 #[inline(always)]
1055 fn butterfly_new<H: Homomorphism<Self, Self>>(hom: H, a: &mut ZnEl, b: &mut ZnEl, twiddle: &ZnEl) {
1056 let self_ = hom.codomain().get_ring();
1057
1058 a.0 = reduce_to_half(a.0, self_.modulus_times_three);
1059 hom.mul_assign_ref_map(b, twiddle);
1060
1061 (a.0, b.0) = (a.0 + b.0, a.0 + self_.modulus_times_three - b.0);
1062 }
1063
1064 #[inline(always)]
1065 fn inv_butterfly_new<H: Homomorphism<Self, Self>>(hom: H, a: &mut ZnEl, b: &mut ZnEl, twiddle: &ZnEl) {
1066 let self_ = hom.codomain().get_ring();
1067
1068 (a.0, b.0) = (a.0 + b.0, a.0 + self_.modulus_times_three - b.0);
1069 a.0 = reduce_to_half(a.0, self_.modulus_times_three);
1070 hom.mul_assign_ref_map(b, twiddle);
1071 }
1072
1073 #[inline(always)]
1074 fn prepare_for_inv_fft(&self, value: &mut Self::Element) {
1075 if value.0 >= self.modulus_times_three {
1076 value.0 -= self.modulus_times_three;
1077 }
1078 }
1079}
1080
1081impl CooleyTukeyRadix3Butterfly<ZnBase> for ZnBase {
1082
1083 fn butterfly<H: Homomorphism<ZnBase, Self>>(
1084 hom: H,
1085 a: &mut Self::Element,
1086 b: &mut Self::Element,
1087 c: &mut Self::Element,
1088 z: &ZnEl,
1089 t: &ZnEl,
1090 t_sqr_z_sqr: &ZnEl
1091 ) {
1092 let self_ = hom.codomain().get_ring();
1093
1094 hom.mul_assign_ref_map(b, t);
1095 hom.mul_assign_ref_map(c, t_sqr_z_sqr);
1096 let b_ = hom.mul_ref_map(b, z);
1097 let c_ = hom.mul_ref_map(c, z);
1098
1099 let mut s1 = b.0 + c_.0;
1100 let mut s2 = b_.0 + c.0;
1101 a.0 = reduce_to_half(a.0, self_.modulus_times_three);
1102 s1 = reduce_to_half(s1, self_.modulus_times_three);
1103 s2 = reduce_to_half(s2, self_.modulus_times_three);
1104 let mut s3 = s1 + s2;
1105 s3 = reduce_to_half(s3, self_.modulus_times_three);
1106
1107 b.0 = a.0 + s2;
1108 c.0 = a.0 + self_.modulus_times_three - s3;
1109 a.0 = a.0 + s1;
1110 }
1111
1112 fn inv_butterfly<H: Homomorphism<ZnBase, Self>>(
1113 hom: H,
1114 a: &mut Self::Element,
1115 b: &mut Self::Element,
1116 c: &mut Self::Element,
1117 z: &ZnEl,
1118 t: &ZnEl,
1119 t_sqr: &ZnEl
1120 ) {
1121 let self_ = hom.codomain().get_ring();
1122
1123 let b_ = hom.mul_ref_map(b, z);
1126 let mut s1 = b.0 + c.0;
1127 s1 = reduce_to_half(s1, self_.modulus_times_three);
1128
1129 let s2 = b_.0 + c.0;
1130 let s2_ = hom.mul_ref_snd_map(self_.from_u64_promise_reduced(s2), z);
1131
1132 let mut s3 = s1 + s2_.0;
1133 s3 = reduce_to_half(s3, self_.modulus_times_three);
1134
1135 b.0 = a.0 + s2_.0;
1136 c.0 = a.0 + self_.modulus_times_three - s3;
1137 a.0 = a.0 + s1;
1138 a.0 = reduce_to_half(a.0, self_.modulus_times_three);
1139
1140 hom.mul_assign_ref_map(b, t);
1141 hom.mul_assign_ref_map(c, t_sqr);
1142 }
1143
1144 #[inline(always)]
1145 fn prepare_for_fft(&self, _value: &mut Self::Element) {}
1146
1147 #[inline(always)]
1148 fn prepare_for_inv_fft(&self, value: &mut Self::Element) {
1149 if value.0 >= self.modulus_times_three {
1150 value.0 -= self.modulus_times_three
1151 }
1152 }
1153}
1154
1155impl<I: ?Sized + IntegerRing> CanHomFrom<I> for ZnFastmulBase
1156 where ZnBase: CanHomFrom<I>
1157{
1158 type Homomorphism = <ZnBase as CanHomFrom<I>>::Homomorphism;
1159
1160 fn has_canonical_hom(&self, from: &I) -> Option<Self::Homomorphism> {
1161 self.base.get_ring().has_canonical_hom(from)
1162 }
1163
1164 fn map_in(&self, from: &I, el: I::Element, hom: &Self::Homomorphism) -> Self::Element {
1165 self.rev_delegate(self.base.get_ring().map_in(from, el, hom))
1166 }
1167}
1168
1169impl_field_wrap_unwrap_homs!{ ZnBase, ZnBase }
1170impl_field_wrap_unwrap_isos!{ ZnBase, ZnBase }
1171impl_localpir_wrap_unwrap_homs!{ ZnBase, ZnBase }
1172impl_localpir_wrap_unwrap_isos!{ ZnBase, ZnBase }
1173
1174impl<I> CanHomFrom<zn_big::ZnBase<I>> for AsFieldBase<Zn>
1175 where I: RingStore,
1176 I::Type: IntegerRing
1177{
1178 type Homomorphism = <ZnBase as CanHomFrom<zn_big::ZnBase<I>>>::Homomorphism;
1179
1180 fn has_canonical_hom(&self, from: &zn_big::ZnBase<I>) -> Option<Self::Homomorphism> {
1181 self.get_delegate().has_canonical_hom(from)
1182 }
1183
1184 fn map_in(&self, from: &zn_big::ZnBase<I>, el: <zn_big::ZnBase<I> as RingBase>::Element, hom: &Self::Homomorphism) -> Self::Element {
1185 self.rev_delegate(self.get_delegate().map_in(from, el, hom))
1186 }
1187}
1188
1189impl<I> CanIsoFromTo<zn_big::ZnBase<I>> for AsFieldBase<Zn>
1190 where I: RingStore,
1191 I::Type: IntegerRing
1192{
1193 type Isomorphism = <ZnBase as CanIsoFromTo<zn_big::ZnBase<I>>>::Isomorphism;
1194
1195 fn has_canonical_iso(&self, from: &zn_big::ZnBase<I>) -> Option<Self::Isomorphism> {
1196 self.get_delegate().has_canonical_iso(from)
1197 }
1198
1199 fn map_out(&self, from: &zn_big::ZnBase<I>, el: Self::Element, hom: &Self::Isomorphism) -> <zn_big::ZnBase<I> as RingBase>::Element {
1200 self.get_delegate().map_out(from, self.delegate(el), hom)
1201 }
1202}
1203
1204#[cfg(test)]
1205use test::Bencher;
1206
1207#[cfg(test)]
1208fn elements<'a>(ring: &'a Zn) -> impl 'a + Iterator<Item = El<Zn>> {
1209 (0..63).map(|i| ring.coerce(&StaticRing::<i64>::RING, 1 << i))
1210}
1211
1212#[cfg(test)]
1213const LARGE_MODULI: [u64; 6] = [(1 << 41) - 1, (1 << 42) - 1, (1 << 58) - 1, (1 << 58) + 1, (3 << 57) - 1, (3 << 57) + 1];
1214
1215#[test]
1216fn test_complete_reduce() {
1217 let ring = Zn::new(32);
1218 assert_eq!(31, ring.get_ring().complete_reduce(4 * 32 - 1));
1219}
1220
1221#[test]
1222fn test_sum() {
1223 for n in LARGE_MODULI {
1224 let Zn = Zn::new(n);
1225 assert_el_eq!(Zn, Zn.int_hom().map(10001 * 5000), Zn.sum((0..=10000).map(|x| Zn.int_hom().map(x))));
1226 }
1227}
1228
1229#[test]
1230fn test_ring_axioms() {
1231 for n in 2..=17 {
1232 let ring = Zn::new(n);
1233 crate::ring::generic_tests::test_ring_axioms(&ring, (0..=ring.get_ring().repr_bound()).map(|n| ZnEl(n)));
1234 }
1235 for n in LARGE_MODULI {
1236 let ring = Zn::new(n);
1237 crate::ring::generic_tests::test_ring_axioms(&ring, elements(&ring));
1238 }
1239}
1240
1241#[test]
1242fn test_hash_axioms() {
1243 for n in 2..=17 {
1244 let ring = Zn::new(n);
1245 crate::ring::generic_tests::test_hash_axioms(&ring, (0..=ring.get_ring().repr_bound()).map(|n| ZnEl(n)));
1246 }
1247 for n in LARGE_MODULI {
1248 let ring = Zn::new(n);
1249 crate::ring::generic_tests::test_hash_axioms(&ring, elements(&ring));
1250 }
1251}
1252
1253#[test]
1254fn test_divisibility_axioms() {
1255 for n in 2..=17 {
1256 let Zn = Zn::new(n);
1257 crate::divisibility::generic_tests::test_divisibility_axioms(&Zn, Zn.elements());
1258 }
1259 for n in LARGE_MODULI {
1260 let Zn = Zn::new(n);
1261 crate::divisibility::generic_tests::test_divisibility_axioms(&Zn, elements(&Zn));
1262 }
1263}
1264
1265#[test]
1266fn test_zn_axioms() {
1267 for n in 2..=17 {
1268 let Zn = Zn::new(n);
1269 super::generic_tests::test_zn_axioms(&Zn);
1270 }
1271}
1272
1273#[test]
1274fn test_principal_ideal_ring_axioms() {
1275 for n in 2..=17 {
1276 let R = Zn::new(n);
1277 crate::pid::generic_tests::test_principal_ideal_ring_axioms(R, R.elements());
1278 }
1279 let R = Zn::new(63);
1280 crate::pid::generic_tests::test_principal_ideal_ring_axioms(R, R.elements());
1281}
1282
1283#[test]
1284fn test_hom_from_fastmul() {
1285 for n in 2..=17 {
1286 let Zn = Zn::new(n);
1287 let Zn_fastmul = ZnFastmul::new(Zn).unwrap();
1288 crate::ring::generic_tests::test_hom_axioms(Zn_fastmul, Zn, Zn.elements().map(|x| Zn_fastmul.coerce(&Zn, x)));
1289 }
1290 for n in [(1 << 41) - 1, (1 << 42) - 1, (1 << 58) - 1, (1 << 58) + 1, (3 << 57) - 1, (3 << 57) + 1] {
1291 let Zn = Zn::new(n);
1292 let Zn_fastmul = ZnFastmul::new(Zn).unwrap();
1293 crate::ring::generic_tests::test_hom_axioms(Zn_fastmul, Zn, elements(&Zn).map(|x| Zn_fastmul.coerce(&Zn, x)));
1294 }
1295}
1296
1297#[test]
1298fn test_finite_ring_axioms() {
1299 for n in 2..=17 {
1300 crate::rings::finite::generic_tests::test_finite_ring_axioms(&Zn::new(n));
1301 }
1302 crate::rings::finite::generic_tests::test_finite_ring_axioms(&Zn::new(128));
1303 crate::rings::finite::generic_tests::test_finite_ring_axioms(&Zn::new(1 << 32));
1304}
1305
1306#[test]
1307fn test_from_int_hom() {
1308 for n in 2..=17 {
1309 let Zn = Zn::new(n);
1310 crate::ring::generic_tests::test_hom_axioms(StaticRing::<i8>::RING, Zn, -8..8);
1311 crate::ring::generic_tests::test_hom_axioms(StaticRing::<i16>::RING, Zn, -8..8);
1312 crate::ring::generic_tests::test_hom_axioms(StaticRing::<i32>::RING, Zn, -8..8);
1313 crate::ring::generic_tests::test_hom_axioms(StaticRing::<i64>::RING, Zn, -8..8);
1314 crate::ring::generic_tests::test_hom_axioms(StaticRing::<i128>::RING, Zn, -8..8);
1315 }
1316 let Zn = Zn::new(5);
1317 assert_el_eq!(Zn, Zn.int_hom().map(3), Zn.can_hom(&StaticRing::<i64>::RING).unwrap().map(-1596802));
1318}
1319
1320#[test]
1321fn test_bounded_reduce_large() {
1322 const FACTOR: usize = 32;
1323 let n_max = (1 << 62) / 9;
1324 for n in (n_max - 10)..=n_max {
1325 let Zn = Zn::new(n);
1326 let val_max = Zn.get_ring().repr_bound() as u128 * Zn.get_ring().repr_bound() as u128 * FACTOR as u128;
1327 for k in (val_max - 100)..=val_max {
1328 assert_eq!((k % (n as u128)) as i64, Zn.smallest_positive_lift(ZnEl(Zn.get_ring().bounded_reduce_larger::<FACTOR>(k))));
1329 }
1330 }
1331}
1332
1333#[test]
1334fn test_smallest_lift() {
1335 for n in 2..=17 {
1336 let ring = Zn::new(n);
1337 for k in 0..=ring.get_ring().repr_bound() {
1338 let expected = if (k % n) <= n / 2 { (k % n) as i64 } else { (k % n) as i64 - n as i64 };
1339 if n % 2 == 0 && (k % n) == n / 2 {
1340 assert!(ring.smallest_lift(ZnEl(k)) == n as i64 / 2 || ring.smallest_lift(ZnEl(k)) == -(n as i64) / 2)
1341 } else {
1342 assert_eq!(expected, ring.smallest_lift(ZnEl(k)));
1343 }
1344 }
1345 }
1346}
1347
1348#[test]
1349fn test_smallest_positive_lift() {
1350 for n in 2..=17 {
1351 let ring = Zn::new(n);
1352 for k in 0..=ring.get_ring().repr_bound() {
1353 let expected = (k % n) as i64;
1354 assert_eq!(expected, ring.smallest_positive_lift(ZnEl(k)));
1355 }
1356 }
1357}
1358
1359#[test]
1360fn test_bounded_reduce_small() {
1361 for n in 2..=17 {
1362 let Zn = Zn::new(n);
1363 let val_max = Zn.get_ring().repr_bound() as u128 * Zn.get_ring().repr_bound() as u128;
1364 for k in (val_max - 100)..=val_max {
1365 assert_eq!((k % (n as u128)) as i64, Zn.smallest_positive_lift(ZnEl(Zn.get_ring().bounded_reduce(k))));
1366 }
1367 }
1368}
1369
1370#[test]
1371fn test_bounded_reduce_large_small() {
1372 const FACTOR: usize = 32;
1373 for n in 2..=17 {
1374 let Zn = Zn::new(n);
1375 let val_max = Zn.get_ring().repr_bound() as u128 * Zn.get_ring().repr_bound() as u128 * FACTOR as u128;
1376 for k in (val_max - 100)..=val_max {
1377 assert_eq!((k % (n as u128)) as i64, Zn.smallest_positive_lift(ZnEl(Zn.get_ring().bounded_reduce_larger::<FACTOR>(k))));
1378 }
1379 }
1380}
1381
1382#[test]
1383fn test_bounded_reduce() {
1384 let n_max = (1 << 62) / 9;
1385 for n in (n_max - 10)..=n_max {
1386 let Zn = Zn::new(n);
1387 let val_max = Zn.get_ring().repr_bound() as u128 * Zn.get_ring().repr_bound() as u128;
1388 for k in (val_max - 100)..=val_max {
1389 assert_eq!((k % (n as u128)) as i64, Zn.smallest_positive_lift(ZnEl(Zn.get_ring().bounded_reduce(k))));
1390 }
1391 }
1392}
1393
1394#[bench]
1395fn bench_hom_from_i64_large_modulus(bencher: &mut Bencher) {
1396 let Zn = Zn::new(36028797018963971 );
1398 bencher.iter(|| {
1399 let hom = Zn.can_hom(&StaticRing::<i64>::RING).unwrap();
1400 assert_el_eq!(Zn, Zn.int_hom().map(-1300), Zn.sum((0..100).flat_map(|_| (0..=56).map(|k| 1 << k)).map(|x| hom.map(x))))
1401 });
1402}
1403
1404#[bench]
1405fn bench_hom_from_i64_small_modulus(bencher: &mut Bencher) {
1406 let Zn = Zn::new(17);
1408 bencher.iter(|| {
1409 let hom = Zn.can_hom(&StaticRing::<i64>::RING).unwrap();
1410 assert_el_eq!(Zn, Zn.int_hom().map(2850 * 5699), Zn.sum((0..5700).map(|x| hom.map(x))))
1411 });
1412}
1413
1414#[bench]
1415fn bench_reduction_map_use_case(bencher: &mut Bencher) {
1416 let p = 17;
1418 let Zp2 = Zn::new(p * p);
1419 let Zp = Zn::new(p);
1420 let Zp2_mod_p = ZnReductionMap::new(&Zp2, &Zp).unwrap();
1421 let Zp2_p = PreparedDivisor::new(Zp2.get_ring(), Zp2.int_hom().map(p as i32));
1422
1423 let split_quo_rem = |x: El<Zn>| {
1424 let rem = Zp2_mod_p.map_ref(&x);
1425 let Zp2_rem = Zp2_mod_p.smallest_lift(rem);
1426 let quo = Zp2_p.checked_left_div_by(&Zp2.sub(x, Zp2_rem), Zp2.get_ring()).unwrap();
1427 (rem, Zp2_mod_p.map(quo))
1428 };
1429
1430 bencher.iter(|| {
1431 for x in Zp2.elements() {
1432 for y in Zp2.elements() {
1433 let (x_low, x_high) = split_quo_rem(x);
1434 let (y_low, y_high) = split_quo_rem(y);
1435 assert_el_eq!(Zp2, Zp2.mul(x, y), &Zp2.add(Zp2.mul(Zp2_mod_p.smallest_lift(x_low), Zp2_mod_p.smallest_lift(y_low)), Zp2_mod_p.mul_quotient_fraction(Zp.add(Zp.mul(x_low, y_high), Zp.mul(x_high, y_low)))));
1436 }
1437 }
1438 });
1439}
1440
1441#[bench]
1442fn bench_inner_product(bencher: &mut Bencher) {
1443 let Fp = Zn::new(65537);
1444 let len = 1 << 12;
1445 let lhs = (0..len).map(|i| Fp.int_hom().map(i)).collect::<Vec<_>>();
1446 let rhs = (0..len).map(|i| Fp.int_hom().map(i)).collect::<Vec<_>>();
1447 let expected = (0..len).map(|i| Fp.int_hom().map(i * i)).fold(Fp.zero(), |l, r| Fp.add(l, r));
1448
1449 bencher.iter(|| {
1450 let actual = <_ as ComputeInnerProduct>::inner_product_ref(Fp.get_ring(), lhs.iter().zip(rhs.iter()).map(|x| std::hint::black_box(x)));
1451 assert_el_eq!(Fp, expected, actual);
1452 })
1453}
1454
1455#[test]
1456fn test_serialize() {
1457 let ring = Zn::new(128);
1458 crate::serialization::generic_tests::test_serialization(ring, ring.elements())
1459}