1use std::fmt::Debug;
2use std::fmt::Formatter;
3
4use crate::algorithms::eea::signed_gcd;
5use crate::algorithms::matmul::StrassenHint;
6use crate::algorithms::convolution::KaratsubaHint;
7use crate::homomorphism::*;
8use crate::divisibility::*;
9use crate::field::Field;
10use crate::homomorphism::Homomorphism;
11use crate::rings::rational::RationalFieldBase;
12use crate::integer::IntegerRing;
13use crate::pid::{EuclideanRing, PrincipalIdealRing};
14use crate::ring::*;
15
16use super::*;
17
18#[stability::unstable(feature = "enable")]
19pub struct FractionFieldImplBase<R>
20 where R: RingStore,
21 R::Type: Domain
22{
23 base_ring: R
24}
25
26#[stability::unstable(feature = "enable")]
30pub type FractionFieldImpl<R> = RingValue<FractionFieldImplBase<R>>;
31
32pub struct FractionFieldEl<R>
33 where R: RingStore,
34 R::Type: Domain
35{
36 num: El<R>,
37 den: El<R>
38}
39
40impl<R> FractionFieldImpl<R>
41 where R: RingStore,
42 R::Type: Domain
43{
44 #[stability::unstable(feature = "enable")]
45 pub fn new(base_ring: R) -> Self {
46 assert!(base_ring.get_ring().is_commutative());
47 RingValue::from(FractionFieldImplBase { base_ring })
48 }
49}
50
51impl<R> FractionFieldImplBase<R>
52 where R: RingStore,
53 R::Type: Domain
54{
55 fn reduce(&self, el: &mut FractionFieldEl<R>) {
69 if let Some(quo) = self.base_ring.checked_div(&el.num, &el.den) {
70 el.num = quo;
71 el.den = self.base_ring.one();
72 } else if let Some(factor) = <_ as DivisibilityRing>::balance_factor(self.base_ring.get_ring(), [&el.num, &el.den].into_iter()) {
73 el.num = self.base_ring.checked_div(&el.num, &factor).unwrap();
74 el.den = self.base_ring.checked_div(&el.den, &factor).unwrap();
75 }
76 }
77}
78
79impl<R> Debug for FractionFieldEl<R>
80 where R: RingStore,
81 R::Type: Domain,
82 El<R>: Debug
83{
84 fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
85 f.debug_struct("FractionFieldEl")
86 .field("num", &self.num)
87 .field("den", &self.den)
88 .finish()
89 }
90}
91
92impl<R> PartialEq for FractionFieldImplBase<R>
93 where R: RingStore,
94 R::Type: Domain
95{
96 fn eq(&self, other: &Self) -> bool {
97 self.base_ring.get_ring() == other.base_ring.get_ring()
98 }
99}
100
101impl<R> Clone for FractionFieldImplBase<R>
102 where R: RingStore + Clone,
103 R::Type: Domain
104{
105 fn clone(&self) -> Self {
106 Self {
107 base_ring: self.base_ring.clone()
108 }
109 }
110}
111
112impl<R> Copy for FractionFieldImplBase<R>
113 where R: RingStore + Copy,
114 R::Type: Domain,
115 El<R>: Copy
116{}
117
118impl<R> Clone for FractionFieldEl<R>
119 where R: RingStore,
120 R::Type: Domain,
121 El<R>: Clone
122{
123 fn clone(&self) -> Self {
124 Self {
125 num: self.num.clone(),
126 den: self.den.clone()
127 }
128 }
129}
130
131impl<R> Copy for FractionFieldEl<R>
132 where R: RingStore,
133 R::Type: Domain,
134 El<R>: Copy
135{}
136
137impl<R> RingBase for FractionFieldImplBase<R>
138 where R: RingStore,
139 R::Type: Domain
140{
141 type Element = FractionFieldEl<R>;
142
143 fn clone_el(&self, val: &Self::Element) -> Self::Element {
144 FractionFieldEl {
145 num: self.base_ring.clone_el(&val.num),
146 den: self.base_ring.clone_el(&val.den)
147 }
148 }
149
150 fn add_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element) {
151 self.base_ring.mul_assign_ref(&mut lhs.num, &rhs.den);
152 self.base_ring.add_assign(&mut lhs.num, self.base_ring.mul_ref(&lhs.den, &rhs.num));
153 self.base_ring.mul_assign_ref(&mut lhs.den, &rhs.den);
154 self.reduce(lhs);
155 }
156
157 fn add_assign(&self, lhs: &mut Self::Element, rhs: Self::Element) {
158 self.base_ring.mul_assign_ref(&mut lhs.num, &rhs.den);
159 self.base_ring.add_assign(&mut lhs.num, self.base_ring.mul_ref_fst(&lhs.den, rhs.num));
160 self.base_ring.mul_assign(&mut lhs.den, rhs.den);
161 self.reduce(lhs);
162 }
163
164 fn mul_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element) {
165 self.base_ring.mul_assign_ref(&mut lhs.num, &rhs.num);
166 self.base_ring.mul_assign_ref(&mut lhs.den, &rhs.den);
167 self.reduce(lhs);
168 }
169
170 fn mul_assign(&self, lhs: &mut Self::Element, rhs: Self::Element) {
171 self.base_ring.mul_assign(&mut lhs.num, rhs.num);
172 self.base_ring.mul_assign(&mut lhs.den, rhs.den);
173 self.reduce(lhs);
174 }
175
176 fn negate_inplace(&self, lhs: &mut Self::Element) {
177 self.base_ring.negate_inplace(&mut lhs.num);
178 }
179
180 fn eq_el(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool {
181 self.base_ring.eq_el(
182 &self.base_ring.mul_ref(&lhs.num, &rhs.den),
183 &self.base_ring.mul_ref(&rhs.num, &lhs.den)
184 )
185 }
186
187 fn is_zero(&self, value: &Self::Element) -> bool {
188 self.base_ring.is_zero(&value.num)
189 }
190
191 fn is_one(&self, value: &Self::Element) -> bool {
192 self.base_ring.eq_el(&value.num, &value.den)
193 }
194
195 fn is_neg_one(&self, value: &Self::Element) -> bool {
196 self.base_ring.eq_el(&self.base_ring.negate(self.base_ring.clone_el(&value.num)), &value.den)
197 }
198
199 fn is_approximate(&self) -> bool {
200 self.base_ring.get_ring().is_approximate()
201 }
202
203 fn is_commutative(&self) -> bool {
204 true
207 }
208
209 fn is_noetherian(&self) -> bool {
210 true
211 }
212
213 fn from_int(&self, value: i32) -> Self::Element {
214 self.from(self.base_ring.int_hom().map(value))
215 }
216
217 fn dbg_within<'a>(&self, value: &Self::Element, out: &mut std::fmt::Formatter<'a>, env: EnvBindingStrength) -> std::fmt::Result {
218 if let Some(quo) = self.base_ring.checked_div(&value.num, &value.den) {
219 self.base_ring.get_ring().dbg_within(&quo, out, env)
220 } else {
221 if env >= EnvBindingStrength::Product {
222 write!(out, "(")?;
223 }
224 self.base_ring.get_ring().dbg_within(&value.num, out, EnvBindingStrength::Product)?;
225 write!(out, "/")?;
226 self.base_ring.get_ring().dbg_within(&value.den, out, EnvBindingStrength::Product)?;
227 if env >= EnvBindingStrength::Product {
228 write!(out, ")")?;
229 }
230 Ok(())
231 }
232 }
233
234 fn characteristic<I: RingStore + Copy>(&self, ZZ: I) -> Option<El<I>>
235 where I::Type: IntegerRing
236 {
237 self.base_ring.characteristic(ZZ)
238 }
239}
240
241impl<R> RingExtension for FractionFieldImplBase<R>
242 where R: RingStore,
243 R::Type: Domain
244{
245 type BaseRing = R;
246
247 fn base_ring<'a>(&'a self) -> &'a Self::BaseRing {
248 &self.base_ring
249 }
250
251 fn from(&self, x: El<Self::BaseRing>) -> Self::Element {
252 FractionFieldEl {
253 num: x,
254 den: self.base_ring.one()
255 }
256 }
257
258 fn mul_assign_base(&self, lhs: &mut Self::Element, rhs: &El<Self::BaseRing>) {
259 self.base_ring.mul_assign_ref(&mut lhs.num, rhs);
260 self.reduce(lhs);
261 }
262}
263
264impl<R> DivisibilityRing for FractionFieldImplBase<R>
265 where R: RingStore,
266 R::Type: Domain
267{
268 fn checked_left_div(&self, lhs: &Self::Element, rhs: &Self::Element) -> Option<Self::Element> {
269 if self.is_zero(lhs) && self.is_zero(rhs) {
270 Some(self.zero())
271 } else if self.is_zero(rhs) {
272 None
273 } else {
274 let mut result = self.clone_el(lhs);
275 self.base_ring.mul_assign_ref(&mut result.num, &rhs.den);
276 self.base_ring.mul_assign_ref(&mut result.den, &rhs.num);
277 self.reduce(&mut result);
278 Some(result)
279 }
280 }
281
282 fn is_unit(&self, x: &Self::Element) -> bool {
283 !self.is_zero(x)
284 }
285
286 fn balance_factor<'a, I>(&self, elements: I) -> Option<Self::Element>
287 where I: Iterator<Item = &'a Self::Element>,
288 Self: 'a
289 {
290 let mut denominator_lcm = self.base_ring.one();
296 let mut it = elements.map(|x| {
297 let gcd = self.base_ring.get_ring().balance_factor([&denominator_lcm, &x.den].into_iter());
298 self.base_ring.mul_assign_ref(&mut denominator_lcm, &x.den);
299 if let Some(gcd) = gcd {
300 denominator_lcm = self.base_ring.checked_div(&denominator_lcm, &gcd).unwrap();
301 }
302 return &x.num;
303 });
304 let base_balance_factor = self.base_ring.get_ring().balance_factor(it.by_ref());
305 it.for_each(|_| {});
306
307 if let Some(den) = base_balance_factor {
308 return Some(FractionFieldEl {
309 num: den,
310 den: denominator_lcm
311 });
312 } else {
313 return Some(FractionFieldEl {
314 num: self.base_ring.one(),
315 den: denominator_lcm
316 });
317 }
318 }
319}
320
321impl<R> Domain for FractionFieldImplBase<R>
322 where R: RingStore,
323 R::Type: Domain
324{}
325
326impl<R> PrincipalIdealRing for FractionFieldImplBase<R>
327 where R: RingStore,
328 R::Type: Domain
329{
330 fn checked_div_min(&self, lhs: &Self::Element, rhs: &Self::Element) -> Option<Self::Element> {
331 if self.is_zero(lhs) && self.is_zero(rhs) {
332 return Some(self.one());
333 }
334 self.checked_left_div(lhs, rhs)
335 }
336
337 fn extended_ideal_gen(&self, lhs: &Self::Element, rhs: &Self::Element) -> (Self::Element, Self::Element, Self::Element) {
338 if self.is_zero(lhs) && self.is_zero(rhs) {
339 return (self.zero(), self.zero(), self.zero());
340 } else if self.is_zero(lhs) {
341 return (self.zero(), self.one(), self.clone_el(rhs));
342 } else {
343 return (self.one(), self.zero(), self.clone_el(lhs));
344 }
345 }
346}
347
348impl<R> EuclideanRing for FractionFieldImplBase<R>
349 where R: RingStore,
350 R::Type: Domain
351{
352 fn euclidean_deg(&self, val: &Self::Element) -> Option<usize> {
353 if self.is_zero(val) { Some(0) } else { Some(1) }
354 }
355
356 fn euclidean_div_rem(&self, lhs: Self::Element, rhs: &Self::Element) -> (Self::Element, Self::Element) {
357 assert!(!self.is_zero(rhs));
358 (self.checked_left_div(&lhs, rhs).unwrap(), self.zero())
359 }
360}
361
362impl<R> Field for FractionFieldImplBase<R>
363 where R: RingStore,
364 R::Type: Domain
365{}
366
367impl<R> FractionField for FractionFieldImplBase<R>
368 where R: RingStore,
369 R::Type: Domain
370{
371 fn as_fraction(&self, el: Self::Element) -> (El<Self::BaseRing>, El<Self::BaseRing>) {
372 (el.num, el.den)
373 }
374}
375
376impl<R> HashableElRing for FractionFieldImplBase<R>
381 where R: RingStore,
382 R::Type: Domain + IntegerRing + HashableElRing
383{
384 fn hash<H: std::hash::Hasher>(&self, el: &Self::Element, h: &mut H) {
385 let gcd = signed_gcd(self.base_ring.clone_el(&el.den), self.base_ring.clone_el(&el.num), &self.base_ring);
386 self.base_ring.get_ring().hash(&self.base_ring.checked_div(&el.num, &gcd).unwrap(), h);
387 self.base_ring.get_ring().hash(&self.base_ring.checked_div(&el.den, &gcd).unwrap(), h);
388 }
389}
390
391impl<R: RingStore> StrassenHint for FractionFieldImplBase<R>
392 where R: RingStore,
393 R::Type: Domain
394{
395 default fn strassen_threshold(&self) -> usize {
396 usize::MAX
397 }
398}
399
400impl<R: RingStore> KaratsubaHint for FractionFieldImplBase<R>
401 where R: RingStore,
402 R::Type: Domain
403{
404 default fn karatsuba_threshold(&self) -> usize {
405 usize::MAX
406 }
407}
408
409impl<R: RingStore, S: RingStore> CanHomFrom<FractionFieldImplBase<S>> for FractionFieldImplBase<R>
410 where R: RingStore,
411 S: RingStore,
412 R::Type: Domain + CanHomFrom<S::Type>,
413 S::Type: Domain
414{
415 type Homomorphism = <R::Type as CanHomFrom<S::Type>>::Homomorphism;
416
417 fn has_canonical_hom(&self, from: &FractionFieldImplBase<S>) -> Option<Self::Homomorphism> {
418 self.base_ring().get_ring().has_canonical_hom(from.base_ring().get_ring())
419 }
420
421 fn map_in(&self, from: &FractionFieldImplBase<S>, el: <FractionFieldImplBase<S> as RingBase>::Element, hom: &Self::Homomorphism) -> Self::Element {
422 self.from_fraction(self.base_ring().get_ring().map_in(from.base_ring().get_ring(), el.num, hom), self.base_ring().get_ring().map_in(from.base_ring().get_ring(), el.den, hom))
423 }
424}
425
426impl<R: RingStore, S: RingStore> CanIsoFromTo<FractionFieldImplBase<S>> for FractionFieldImplBase<R>
427 where R: RingStore,
428 S: RingStore,
429 R::Type: Domain + CanIsoFromTo<S::Type>,
430 S::Type: Domain
431{
432 type Isomorphism = <R::Type as CanIsoFromTo<S::Type>>::Isomorphism;
433
434 fn has_canonical_iso(&self, from: &FractionFieldImplBase<S>) -> Option<Self::Isomorphism> {
435 self.base_ring().get_ring().has_canonical_iso(from.base_ring().get_ring())
436 }
437
438 fn map_out(&self, from: &FractionFieldImplBase<S>, el: Self::Element, iso: &Self::Isomorphism) -> <FractionFieldImplBase<S> as RingBase>::Element {
439 from.from_fraction(self.base_ring().get_ring().map_out(from.base_ring().get_ring(), el.num, iso), self.base_ring().get_ring().map_out(from.base_ring().get_ring(), el.den, iso))
440 }
441}
442
443impl<R: RingStore, I: RingStore> CanHomFrom<RationalFieldBase<I>> for FractionFieldImplBase<R>
444 where R: RingStore,
445 I: RingStore,
446 R::Type: Domain + CanHomFrom<I::Type>,
447 I::Type: IntegerRing
448{
449 type Homomorphism = <R::Type as CanHomFrom<I::Type>>::Homomorphism;
450
451 fn has_canonical_hom(&self, from: &RationalFieldBase<I>) -> Option<Self::Homomorphism> {
452 self.base_ring().get_ring().has_canonical_hom(from.base_ring().get_ring())
453 }
454
455 fn map_in(&self, from: &RationalFieldBase<I>, el: <RationalFieldBase<I> as RingBase>::Element, hom: &Self::Homomorphism) -> Self::Element {
456 let (num, den) = from.as_fraction(el);
457 self.from_fraction(self.base_ring().get_ring().map_in(from.base_ring().get_ring(), num, hom), self.base_ring().get_ring().map_in(from.base_ring().get_ring(), den, hom))
458 }
459}
460
461impl<R: RingStore, I: RingStore> CanIsoFromTo<RationalFieldBase<I>> for FractionFieldImplBase<R>
462 where R: RingStore,
463 I: RingStore,
464 R::Type: Domain + CanIsoFromTo<I::Type>,
465 I::Type: IntegerRing
466{
467 type Isomorphism = <R::Type as CanIsoFromTo<I::Type>>::Isomorphism;
468
469 fn has_canonical_iso(&self, from: &RationalFieldBase<I>) -> Option<Self::Isomorphism> {
470 self.base_ring().get_ring().has_canonical_iso(from.base_ring().get_ring())
471 }
472
473 fn map_out(&self, from: &RationalFieldBase<I>, el: Self::Element, iso: &Self::Isomorphism) -> <RationalFieldBase<I> as RingBase>::Element {
474 from.from_fraction(self.base_ring().get_ring().map_out(from.base_ring().get_ring(), el.num, iso), self.base_ring().get_ring().map_out(from.base_ring().get_ring(), el.den, iso))
475 }
476}
477
478#[cfg(test)]
479use crate::primitive_int::StaticRing;
480#[cfg(test)]
481use crate::iters::multi_cartesian_product;
482
483#[test]
484fn test_balance_factor() {
485 let ring = FractionFieldImpl::new(StaticRing::<i64>::RING);
486 let elements = [
487 ring.from_fraction(2 * 11, 3),
488 ring.from_fraction(6 * 11, 3),
489 ring.from_fraction(3 * 11, 18),
490 ring.from_fraction(6 * 11, 2),
491 ring.from_fraction(2 * 11, 6),
492 ring.from_fraction(5 * 11, 7),
493 ring.from_fraction(0, 1),
494 ring.from_fraction(0, 3),
495 ring.from_fraction(0, 12),
496 ring.from_fraction(0, 13)
497 ];
498 assert_el_eq!(&ring, ring.from_fraction(11, 7 * 6), ring.get_ring().balance_factor(elements.iter()).unwrap());
499}
500
501#[test]
502fn test_ring_axioms() {
503 let ring = FractionFieldImpl::new(StaticRing::<i64>::RING);
504 let edge_case_elements = multi_cartesian_product([&[-3, -2, -1, 0, 1, 2, 3][..], &[1, 2, 3][..]].into_iter().map(|list| list.iter().copied()), |data| ring.from_fraction(data[0], data[1]), |_, x| *x);
505 crate::ring::generic_tests::test_ring_axioms(&ring, edge_case_elements);
506}