1use std::fmt::Debug;
2
3use serde::de;
4use serde::{Deserializer, Serializer};
5
6use crate::compute_locally::InterpolationBaseRing;
7use crate::divisibility::DivisibilityRing;
8use crate::impl_localpir_wrap_unwrap_homs;
9use crate::impl_localpir_wrap_unwrap_isos;
10use crate::impl_field_wrap_unwrap_homs;
11use crate::impl_field_wrap_unwrap_isos;
12use crate::rings::extension::FreeAlgebraStore;
13use crate::pid::*;
14use crate::specialization::*;
15use crate::integer::*;
16use crate::ordered::OrderedRingStore;
17use crate::ring::*;
18use crate::homomorphism::*;
19use crate::seq::*;
20use crate::delegate::DelegateRing;
21use crate::rings::extension::galois_field::*;
22use crate::rings::zn::*;
23use crate::serialization::SerializableElementRing;
24
25pub struct ZnBase<I: RingStore>
73 where I::Type: IntegerRing
74{
75 integer_ring: I,
76 modulus: El<I>,
77 twice_modulus: El<I>,
78 inverse_modulus: El<I>,
79 inverse_modulus_bitshift: usize,
80}
81
82pub type Zn<I> = RingValue<ZnBase<I>>;
87
88impl<I: RingStore> Zn<I>
89 where I::Type: IntegerRing
90{
91 pub fn new(integer_ring: I, modulus: El<I>) -> Self {
92 RingValue::from(ZnBase::new(integer_ring, modulus))
93 }
94}
95
96impl<I: RingStore> ZnBase<I>
97 where I::Type: IntegerRing
98{
99 pub fn new(integer_ring: I, modulus: El<I>) -> Self {
100 assert!(integer_ring.is_geq(&modulus, &integer_ring.int_hom().map(2)));
101
102 let k = integer_ring.abs_log2_ceil(&integer_ring.mul_ref(&modulus, &modulus)).unwrap() + 2;
106 let mod_square_bound = integer_ring.power_of_two(k);
107 let inverse_modulus = integer_ring.euclidean_div(mod_square_bound, &modulus);
108
109 _ = integer_ring.mul_ref_snd(integer_ring.pow(integer_ring.clone_el(&modulus), 2), &inverse_modulus);
111
112 return ZnBase {
113 twice_modulus: integer_ring.add_ref(&modulus, &modulus),
114 integer_ring: integer_ring,
115 modulus: modulus,
116 inverse_modulus: inverse_modulus,
117 inverse_modulus_bitshift: k
118 };
119 }
120
121 fn bounded_reduce(&self, n: &mut El<I>) {
122 debug_assert!(self.integer_ring.is_leq(&n, &self.integer_ring.mul_ref(&self.twice_modulus, &self.twice_modulus)));
123 debug_assert!(!self.integer_ring.is_neg(&n));
124
125 let mut subtract = self.integer_ring.mul_ref(&n, &self.inverse_modulus);
126 self.integer_ring.euclidean_div_pow_2(&mut subtract, self.inverse_modulus_bitshift);
127 self.integer_ring.mul_assign_ref(&mut subtract, &self.modulus);
128 self.integer_ring.sub_assign(n, subtract);
129
130 debug_assert!(self.integer_ring.is_lt(&n, &self.twice_modulus));
131 }
132}
133
134pub struct ZnEl<I: RingStore>(El<I>)
135 where I::Type: IntegerRing;
136
137impl<I: RingStore> Debug for ZnEl<I>
138 where El<I>: Clone + Debug,
139 I::Type: IntegerRing
140{
141 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
142 write!(f, "ZnEl({:?})", self.0)
143 }
144}
145
146impl<I: RingStore> Clone for ZnEl<I>
147 where El<I>: Clone,
148 I::Type: IntegerRing
149{
150 fn clone(&self) -> Self {
151 ZnEl(self.0.clone())
152 }
153}
154
155impl<I: RingStore> Copy for ZnEl<I>
156 where El<I>: Copy,
157 I::Type: IntegerRing
158{}
159
160impl<I: RingStore> RingBase for ZnBase<I>
161 where I::Type: IntegerRing
162{
163 type Element = ZnEl<I>;
164
165 fn clone_el(&self, val: &Self::Element) -> Self::Element {
166 ZnEl(self.integer_ring().clone_el(&val.0))
167 }
168
169 fn add_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element) {
170 debug_assert!(self.integer_ring.is_leq(&lhs.0, &self.twice_modulus));
171 debug_assert!(self.integer_ring.is_leq(&rhs.0, &self.twice_modulus));
172
173 self.integer_ring.add_assign_ref(&mut lhs.0, &rhs.0);
174 if self.integer_ring.is_geq(&lhs.0, &self.twice_modulus) {
175 self.integer_ring.sub_assign_ref(&mut lhs.0, &self.twice_modulus);
176 }
177
178 debug_assert!(self.integer_ring.is_leq(&lhs.0, &self.twice_modulus));
179 }
180
181 fn add_assign(&self, lhs: &mut Self::Element, rhs: Self::Element) {
182 debug_assert!(self.integer_ring.is_leq(&lhs.0, &self.twice_modulus));
183 debug_assert!(self.integer_ring.is_leq(&rhs.0, &self.twice_modulus));
184
185 self.integer_ring.add_assign(&mut lhs.0, rhs.0);
186 if self.integer_ring.is_geq(&lhs.0, &self.twice_modulus) {
187 self.integer_ring.sub_assign_ref(&mut lhs.0, &self.twice_modulus);
188 }
189
190 debug_assert!(self.integer_ring.is_leq(&lhs.0, &self.twice_modulus));
191 }
192
193 fn sub_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element) {
194 debug_assert!(self.integer_ring.is_leq(&lhs.0, &self.twice_modulus));
195 debug_assert!(self.integer_ring.is_leq(&rhs.0, &self.twice_modulus));
196
197 self.integer_ring.sub_assign_ref(&mut lhs.0, &rhs.0);
198 if self.integer_ring.is_neg(&lhs.0) {
199 self.integer_ring.add_assign_ref(&mut lhs.0, &self.twice_modulus);
200 }
201
202 debug_assert!(self.integer_ring.is_leq(&lhs.0, &self.twice_modulus));
203 debug_assert!(!self.integer_ring.is_neg(&lhs.0));
204 }
205
206 fn negate_inplace(&self, lhs: &mut Self::Element) {
207 debug_assert!(self.integer_ring.is_leq(&lhs.0, &self.twice_modulus));
208
209 self.integer_ring.negate_inplace(&mut lhs.0);
210 self.integer_ring.add_assign_ref(&mut lhs.0, &self.twice_modulus);
211
212 debug_assert!(self.integer_ring.is_leq(&lhs.0, &self.twice_modulus));
213 debug_assert!(!self.integer_ring.is_neg(&lhs.0));
214 }
215
216 fn mul_assign(&self, lhs: &mut Self::Element, rhs: Self::Element) {
217 debug_assert!(self.integer_ring.is_leq(&lhs.0, &self.twice_modulus));
218 debug_assert!(self.integer_ring.is_leq(&rhs.0, &self.twice_modulus));
219
220 self.integer_ring.mul_assign(&mut lhs.0, rhs.0);
221 self.bounded_reduce(&mut lhs.0);
222 }
223
224 fn mul_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element) {
225 debug_assert!(self.integer_ring.is_leq(&lhs.0, &self.twice_modulus));
226 debug_assert!(self.integer_ring.is_leq(&rhs.0, &self.twice_modulus));
227
228 self.integer_ring.mul_assign_ref(&mut lhs.0, &rhs.0);
229 self.bounded_reduce(&mut lhs.0);
230 }
231
232 fn from_int(&self, value: i32) -> Self::Element {
233 RingRef::new(self).coerce(&StaticRing::<i32>::RING, value)
234 }
235
236 fn eq_el(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool {
237 debug_assert!(self.integer_ring.is_leq(&lhs.0, &self.twice_modulus));
238 debug_assert!(self.integer_ring.is_leq(&rhs.0, &self.twice_modulus));
239
240 if self.integer_ring.eq_el(&lhs.0, &rhs.0) {
241 return true;
242 }
243 let difference = self.integer_ring.abs(self.integer_ring.sub_ref(&lhs.0, &rhs.0));
244 return self.integer_ring.eq_el(&difference, &self.modulus) || self.integer_ring.eq_el(&difference, &self.twice_modulus);
245 }
246
247 fn is_zero(&self, value: &Self::Element) -> bool {
248 debug_assert!(self.integer_ring.is_leq(&value.0, &self.twice_modulus));
249
250 self.integer_ring.is_zero(&value.0) || self.integer_ring.eq_el(&value.0, &self.modulus) || self.integer_ring.eq_el(&value.0, &self.twice_modulus)
251 }
252
253 fn is_one(&self, value: &Self::Element) -> bool {
254 debug_assert!(self.integer_ring.is_leq(&value.0, &self.twice_modulus));
255
256 self.integer_ring.is_one(&value.0) || self.integer_ring.eq_el(&value.0, &self.integer_ring.add_ref_fst(&self.modulus, self.integer_ring.one()))
257 }
258
259 fn is_commutative(&self) -> bool { true }
260 fn is_noetherian(&self) -> bool { true }
261
262 fn dbg_within<'a>(&self, value: &Self::Element, out: &mut std::fmt::Formatter<'a>, _: EnvBindingStrength) -> std::fmt::Result {
263 if self.integer_ring.is_geq(&value.0, &self.modulus) {
264 let reduced_value = self.integer_ring.sub_ref(&value.0, &self.modulus);
265 if self.integer_ring.eq_el(&reduced_value, &self.modulus) {
266 self.integer_ring.get_ring().dbg(&self.integer_ring.zero(), out)
267 } else {
268 self.integer_ring.get_ring().dbg(&reduced_value, out)
269 }
270 } else {
271 self.integer_ring.get_ring().dbg(&value.0, out)
272 }
273 }
274
275 fn characteristic<J: RingStore + Copy>(&self, ZZ: J) -> Option<El<J>>
276 where J::Type: IntegerRing
277 {
278 self.size(ZZ)
279 }
280
281 fn is_approximate(&self) -> bool { false }
282}
283
284impl<I: RingStore> Clone for ZnBase<I>
285 where I: Clone,
286 I::Type: IntegerRing
287{
288 fn clone(&self) -> Self {
289 ZnBase {
290 integer_ring: self.integer_ring.clone(),
291 modulus: self.integer_ring.clone_el(&self.modulus),
292 inverse_modulus: self.integer_ring.clone_el(&self.inverse_modulus),
293 inverse_modulus_bitshift: self.inverse_modulus_bitshift,
294 twice_modulus: self.integer_ring.clone_el(&self.twice_modulus)
295 }
296 }
297}
298
299impl<I: RingStore> InterpolationBaseRing for AsFieldBase<Zn<I>>
300 where I::Type: IntegerRing
301{
302 type ExtendedRingBase<'a> = GaloisFieldBaseOver<RingRef<'a, Self>>
303 where Self: 'a;
304
305 type ExtendedRing<'a> = GaloisFieldOver<RingRef<'a, Self>>
306 where Self: 'a;
307
308 fn in_base<'a, S>(&self, ext_ring: S, el: El<S>) -> Option<Self::Element>
309 where Self: 'a, S: RingStore<Type = Self::ExtendedRingBase<'a>>
310 {
311 let wrt_basis = ext_ring.wrt_canonical_basis(&el);
312 if wrt_basis.iter().skip(1).all(|x| self.is_zero(&x)) {
313 return Some(wrt_basis.at(0));
314 } else {
315 return None;
316 }
317 }
318
319 fn in_extension<'a, S>(&self, ext_ring: S, el: Self::Element) -> El<S>
320 where Self: 'a, S: RingStore<Type = Self::ExtendedRingBase<'a>>
321 {
322 ext_ring.inclusion().map(el)
323 }
324
325 fn interpolation_points<'a>(&'a self, count: usize) -> (Self::ExtendedRing<'a>, Vec<El<Self::ExtendedRing<'a>>>) {
326 let ring = generic_impls::interpolation_ring(RingRef::new(self), count);
327 let points = ring.elements().take(count).collect();
328 return (ring, points);
329 }
330}
331impl<I: RingStore> Copy for ZnBase<I>
332 where I: Copy,
333 El<I>: Copy,
334 I::Type: IntegerRing
335{}
336
337impl<I: RingStore> HashableElRing for ZnBase<I>
338 where I::Type: IntegerRing
339{
340 fn hash<H: std::hash::Hasher>(&self, el: &Self::Element, h: &mut H) {
341 self.integer_ring().hash(&self.smallest_positive_lift(self.clone_el(el)), h)
342 }
343}
344
345impl<I: RingStore + Default> FromModulusCreateableZnRing for ZnBase<I>
346 where I::Type: IntegerRing
347{
348 fn create<F, E>(create_modulus: F) -> Result<Self, E>
349 where F: FnOnce(&Self::IntegerRingBase) -> Result<El<Self::IntegerRing>, E>
350 {
351 let ZZ = I::default();
352 let modulus = create_modulus(ZZ.get_ring())?;
353 Ok(Self::new(ZZ, modulus))
354 }
355}
356
357impl<I: RingStore> DivisibilityRing for ZnBase<I>
358 where I::Type: IntegerRing
359{
360 fn checked_left_div(&self, lhs: &Self::Element, rhs: &Self::Element) -> Option<Self::Element> {
361 generic_impls::checked_left_div(RingRef::new(self), lhs, rhs)
362 }
363}
364
365impl<I: RingStore, J: RingStore> CanHomFrom<ZnBase<J>> for ZnBase<I>
366 where I::Type: IntegerRing + CanHomFrom<J::Type>,
367 J::Type: IntegerRing
368{
369 type Homomorphism = <I::Type as CanHomFrom<J::Type>>::Homomorphism;
370
371 fn has_canonical_hom(&self, from: &ZnBase<J>) -> Option<Self::Homomorphism> {
372 let base_hom = <I::Type as CanHomFrom<J::Type>>::has_canonical_hom(self.integer_ring.get_ring(), from.integer_ring.get_ring())?;
373 if self.integer_ring.eq_el(
374 &self.modulus,
375 &<I::Type as CanHomFrom<J::Type>>::map_in(self.integer_ring.get_ring(), from.integer_ring.get_ring(), from.integer_ring().clone_el(&from.modulus), &base_hom)
376 ) {
377 Some(base_hom)
378 } else {
379 None
380 }
381 }
382
383 fn map_in(&self, from: &ZnBase<J>, el: <ZnBase<J> as RingBase>::Element, hom: &Self::Homomorphism) -> Self::Element {
384 ZnEl(<I::Type as CanHomFrom<J::Type>>::map_in(self.integer_ring.get_ring(), from.integer_ring.get_ring(), el.0, hom))
385 }
386}
387
388impl<I: RingStore> CanHomFrom<zn_64::ZnBase> for ZnBase<I>
389 where I::Type: IntegerRing
390{
391 type Homomorphism = <zn_64::ZnBase as CanIsoFromTo<ZnBase<I>>>::Isomorphism;
392
393 fn has_canonical_hom(&self, from: &zn_64::ZnBase) -> Option<Self::Homomorphism> {
394 from.has_canonical_iso(self)
395 }
396
397 fn map_in(&self, from: &zn_64::ZnBase, el: <zn_64::ZnBase as RingBase>::Element, hom: &Self::Homomorphism) -> Self::Element {
398 from.map_out(self, el, hom)
399 }
400}
401
402impl<I: RingStore> CanIsoFromTo<zn_64::ZnBase> for ZnBase<I>
403 where I::Type: IntegerRing
404{
405 type Isomorphism = <zn_64::ZnBase as CanHomFrom<ZnBase<I>>>::Homomorphism;
406
407 fn has_canonical_iso(&self, from: &zn_64::ZnBase) -> Option<Self::Isomorphism> {
408 from.has_canonical_hom(self)
409 }
410
411 fn map_out(&self, from: &zn_64::ZnBase, el: Self::Element, iso: &Self::Isomorphism) -> <zn_64::ZnBase as RingBase>::Element {
412 from.map_in(self, el, iso)
413 }
414}
415
416impl<I: RingStore> PartialEq for ZnBase<I>
417 where I::Type: IntegerRing
418{
419 fn eq(&self, other: &Self) -> bool {
420 self.integer_ring.get_ring() == other.integer_ring.get_ring() && self.integer_ring.eq_el(&self.modulus, &other.modulus)
421 }
422}
423
424impl<I: RingStore, J: RingStore> CanIsoFromTo<ZnBase<J>> for ZnBase<I>
425 where I::Type: IntegerRing + CanIsoFromTo<J::Type>,
426 J::Type: IntegerRing
427{
428 type Isomorphism = <I::Type as CanIsoFromTo<J::Type>>::Isomorphism;
429
430 fn has_canonical_iso(&self, from: &ZnBase<J>) -> Option<Self::Isomorphism> {
431 let base_iso = <I::Type as CanIsoFromTo<J::Type>>::has_canonical_iso(self.integer_ring.get_ring(), from.integer_ring.get_ring())?;
432 if from.integer_ring().eq_el(
433 from.modulus(),
434 &<I::Type as CanIsoFromTo<J::Type>>::map_out(self.integer_ring.get_ring(), from.integer_ring.get_ring(), self.integer_ring().clone_el(self.modulus()), &base_iso)
435 ) {
436 Some(base_iso)
437 } else {
438 None
439 }
440 }
441
442 fn map_out(&self, from: &ZnBase<J>, el: Self::Element, iso: &Self::Isomorphism) -> <ZnBase<J> as RingBase>::Element {
443 ZnEl(<I::Type as CanIsoFromTo<J::Type>>::map_out(self.integer_ring.get_ring(), from.integer_ring.get_ring(), el.0, iso))
444 }
445}
446
447impl<I: RingStore, J: IntegerRing + ?Sized> CanHomFrom<J> for ZnBase<I>
448 where I::Type: IntegerRing,
449 J: CanIsoFromTo<I::Type>
450{
451 type Homomorphism = generic_impls::BigIntToZnHom<J, I::Type, ZnBase<I>>;
452
453 fn has_canonical_hom(&self, from: &J) -> Option<Self::Homomorphism> {
454 generic_impls::has_canonical_hom_from_bigint(from, self, self.integer_ring.get_ring(), Some(&self.integer_ring.mul_ref(&self.twice_modulus, &self.twice_modulus)))
455 }
456
457 fn map_in(&self, from: &J, el: J::Element, hom: &Self::Homomorphism) -> Self::Element {
458 generic_impls::map_in_from_bigint(from, self, self.integer_ring.get_ring(), el, hom, |n| {
459 debug_assert!(self.integer_ring.is_lt(&n, &self.modulus));
460 ZnEl(n)
461 }, |mut n| {
462 debug_assert!(self.integer_ring.is_lt(&n, &self.integer_ring.mul_ref(&self.twice_modulus, &self.twice_modulus)));
463 self.bounded_reduce(&mut n);
464 ZnEl(n)
465 })
466 }
467}
468
469pub struct ZnBaseElementsIter<'a, I>
470 where I: RingStore,
471 I::Type: IntegerRing
472{
473 ring: &'a ZnBase<I>,
474 current: El<I>
475}
476
477impl<'a, I> Clone for ZnBaseElementsIter<'a, I>
478 where I: RingStore,
479 I::Type: IntegerRing
480{
481 fn clone(&self) -> Self {
482 Self { ring: self.ring, current: self.ring.integer_ring().clone_el(&self.current) }
483 }
484}
485
486impl<'a, I> Iterator for ZnBaseElementsIter<'a, I>
487 where I: RingStore,
488 I::Type: IntegerRing
489{
490 type Item = ZnEl<I>;
491
492 fn next(&mut self) -> Option<Self::Item> {
493 if self.ring.integer_ring().is_lt(&self.current, self.ring.modulus()) {
494 let result = self.ring.integer_ring().clone_el(&self.current);
495 self.ring.integer_ring().add_assign(&mut self.current, self.ring.integer_ring().one());
496 return Some(ZnEl(result));
497 } else {
498 return None;
499 }
500 }
501}
502
503impl<I: RingStore> SerializableElementRing for ZnBase<I>
504 where I::Type: IntegerRing + SerializableElementRing
505{
506 fn deserialize<'de, D>(&self, deserializer: D) -> Result<Self::Element, D::Error>
507 where D: Deserializer<'de>
508 {
509 self.integer_ring().get_ring().deserialize(deserializer)
510 .and_then(|x| if self.integer_ring().is_neg(&x) || self.integer_ring().is_geq(&x, self.modulus()) { Err(de::Error::custom("ring element value out of bounds for ring Z/nZ")) } else { Ok(x) })
511 .map(|x| self.from_int_promise_reduced(x))
512 }
513
514 fn serialize<S>(&self, el: &Self::Element, serializer: S) -> Result<S::Ok, S::Error>
515 where S: Serializer
516 {
517 self.integer_ring().get_ring().serialize(&self.smallest_positive_lift(self.clone_el(el)), serializer)
518 }
519}
520
521impl<I: RingStore> FiniteRing for ZnBase<I>
522 where I::Type: IntegerRing
523{
524 type ElementsIter<'a> = ZnBaseElementsIter<'a, I>
525 where Self: 'a;
526
527 fn elements<'a>(&'a self) -> ZnBaseElementsIter<'a, I> {
528 ZnBaseElementsIter {
529 ring: self,
530 current: self.integer_ring().zero()
531 }
532 }
533
534 fn random_element<G: FnMut() -> u64>(&self, rng: G) -> <Self as RingBase>::Element {
535 generic_impls::random_element(self, rng)
536 }
537
538 fn size<J: RingStore + Copy>(&self, ZZ: J) -> Option<El<J>>
539 where J::Type: IntegerRing
540 {
541 if ZZ.get_ring().representable_bits().is_none() || self.integer_ring().abs_log2_ceil(self.modulus()) < ZZ.get_ring().representable_bits() {
542 Some(int_cast(self.integer_ring().clone_el(self.modulus()), ZZ, self.integer_ring()))
543 } else {
544 None
545 }
546 }
547}
548
549impl<I: RingStore> PrincipalIdealRing for ZnBase<I>
550 where I::Type: IntegerRing
551{
552 fn checked_div_min(&self, lhs: &Self::Element, rhs: &Self::Element) -> Option<Self::Element> {
553 generic_impls::checked_div_min(RingRef::new(self), lhs, rhs)
554 }
555
556 fn extended_ideal_gen(&self, lhs: &Self::Element, rhs: &Self::Element) -> (Self::Element, Self::Element, Self::Element) {
557 let (s, t, d) = self.integer_ring().extended_ideal_gen(&lhs.0, &rhs.0);
558 let quo = RingRef::new(self).into_can_hom(self.integer_ring()).ok().unwrap();
559 (quo.map(s), quo.map(t), quo.map(d))
560 }
561}
562
563impl<I> FiniteRingSpecializable for ZnBase<I>
564 where I: RingStore,
565 I::Type: IntegerRing
566{
567 fn specialize<O: FiniteRingOperation<Self>>(op: O) -> Result<O::Output, ()> {
568 Ok(op.execute())
569 }
570}
571
572impl<I: RingStore> ZnRing for ZnBase<I>
573 where I::Type: IntegerRing
574{
575 type IntegerRingBase = I::Type;
576 type IntegerRing = I;
577
578 fn integer_ring(&self) -> &Self::IntegerRing {
579 &self.integer_ring
580 }
581
582 fn modulus(&self) -> &El<Self::IntegerRing> {
583 &self.modulus
584 }
585
586 fn smallest_positive_lift(&self, mut el: Self::Element) -> El<Self::IntegerRing> {
587 if self.integer_ring.eq_el(&el.0, &self.twice_modulus) {
588 return self.integer_ring.zero();
589 }
590 if self.integer_ring.is_geq(&el.0, &self.modulus) {
591 self.integer_ring.sub_assign_ref(&mut el.0, &self.modulus);
592 }
593 debug_assert!(self.integer_ring.is_lt(&el.0, &self.modulus));
594 return el.0;
595 }
596
597 fn from_int_promise_reduced(&self, x: El<Self::IntegerRing>) -> Self::Element {
598 debug_assert!(!self.integer_ring().is_neg(&x));
599 debug_assert!(self.integer_ring().is_lt(&x, self.modulus()));
600 ZnEl(x)
601 }
602}
603
604impl_field_wrap_unwrap_homs!{ <{I, J}> ZnBase<I>, ZnBase<J> where I: RingStore, I::Type: IntegerRing, J: RingStore, J::Type: IntegerRing }
605impl_field_wrap_unwrap_isos!{ <{I, J}> ZnBase<I>, ZnBase<J> where I: RingStore, I::Type: IntegerRing, J: RingStore, J::Type: IntegerRing }
606impl_localpir_wrap_unwrap_homs!{ <{I, J}> ZnBase<I>, ZnBase<J> where I: RingStore, I::Type: IntegerRing, J: RingStore, J::Type: IntegerRing }
607impl_localpir_wrap_unwrap_isos!{ <{I, J}> ZnBase<I>, ZnBase<J> where I: RingStore, I::Type: IntegerRing, J: RingStore, J::Type: IntegerRing }
608
609#[cfg(test)]
610use crate::integer::BigIntRing;
611#[cfg(test)]
612use crate::rings::rust_bigint::*;
613
614#[test]
615fn test_mul() {
616 const ZZ: BigIntRing = BigIntRing::RING;
617 let Z257 = Zn::new(ZZ, ZZ.int_hom().map(257));
618 let x = Z257.coerce(&ZZ, ZZ.int_hom().map(256));
619 assert_el_eq!(Z257, Z257.one(), Z257.mul_ref(&x, &x));
620}
621
622#[test]
623fn test_project() {
624 const ZZ: StaticRing<i64> = StaticRing::RING;
625 let Z17 = Zn::new(ZZ, 17);
626 for k in 0..289 {
627 assert_el_eq!(Z17, Z17.int_hom().map((289 - k) % 17), Z17.coerce(&ZZ, -k as i64));
628 }
629}
630
631#[test]
632fn test_ring_axioms_znbase() {
633 let ring = Zn::new(StaticRing::<i64>::RING, 63);
634 crate::ring::generic_tests::test_ring_axioms(&ring, ring.elements())
635}
636
637#[test]
638fn test_hash_axioms() {
639 let ring = Zn::new(StaticRing::<i64>::RING, 63);
640 crate::ring::generic_tests::test_hash_axioms(&ring, ring.elements())
641}
642
643#[test]
644fn test_canonical_iso_axioms_zn_big() {
645 let from = Zn::new(StaticRing::<i128>::RING, 7 * 11);
646 let to = Zn::new(BigIntRing::RING, BigIntRing::RING.int_hom().map(7 * 11));
647 crate::ring::generic_tests::test_hom_axioms(&from, &to, from.elements());
648 crate::ring::generic_tests::test_iso_axioms(&from, &to, from.elements());
649 assert!(from.can_hom(&Zn::new(StaticRing::<i64>::RING, 19)).is_none());
650}
651
652#[test]
653fn test_canonical_hom_axioms_static_int() {
654 let from = StaticRing::<i32>::RING;
655 let to = Zn::new(StaticRing::<i128>::RING, 7 * 11);
656 crate::ring::generic_tests::test_hom_axioms(&from, to, 0..=(2 * 7 * 11));
657}
658
659#[test]
660fn test_zn_ring_axioms_znbase() {
661 super::generic_tests::test_zn_axioms(Zn::new(StaticRing::<i64>::RING, 17));
662 super::generic_tests::test_zn_axioms(Zn::new(StaticRing::<i64>::RING, 63));
663}
664
665#[test]
666fn test_zn_map_in_large_int_znbase() {
667 super::generic_tests::test_map_in_large_int(Zn::new(StaticRing::<i64>::RING, 63));
668}
669
670#[test]
671fn test_zn_map_in_small_int() {
672 let ring = Zn::new(StaticRing::<i64>::RING, 257);
673 assert_el_eq!(ring, ring.one(), ring.coerce(&StaticRing::<i8>::RING, 1));
674}
675
676#[test]
677fn test_divisibility_axioms() {
678 let R = Zn::new(StaticRing::<i64>::RING, 17);
679 crate::divisibility::generic_tests::test_divisibility_axioms(&R, R.elements());
680}
681
682#[test]
683fn test_principal_ideal_ring_axioms() {
684 let R = Zn::new(StaticRing::<i64>::RING, 17);
685 crate::pid::generic_tests::test_principal_ideal_ring_axioms(&R, R.elements());
686 let R = Zn::new(StaticRing::<i64>::RING, 63);
687 crate::pid::generic_tests::test_principal_ideal_ring_axioms(&R, R.elements());
688}
689
690#[test]
691fn test_canonical_iso_axioms_as_field() {
692 let R = Zn::new(StaticRing::<i128>::RING, 17);
693 let R2 = R.clone().as_field().ok().unwrap();
694 crate::ring::generic_tests::test_hom_axioms(&R, &R2, R.elements());
695 crate::ring::generic_tests::test_iso_axioms(&R, &R2, R.elements());
696 crate::ring::generic_tests::test_hom_axioms(&R2, &R, R2.elements());
697 crate::ring::generic_tests::test_iso_axioms(&R2, &R, R2.elements());
698}
699
700#[test]
701fn test_canonical_iso_axioms_zn_64() {
702 let R = Zn::new(StaticRing::<i128>::RING, 17);
703 let R2 = zn_64::Zn::new(17);
704 crate::ring::generic_tests::test_hom_axioms(&R, &R2, R.elements());
705 crate::ring::generic_tests::test_iso_axioms(&R, &R2, R.elements());
706 crate::ring::generic_tests::test_hom_axioms(&R2, &R, R2.elements());
707 crate::ring::generic_tests::test_iso_axioms(&R2, &R, R2.elements());
708}
709
710#[test]
711fn test_finite_field_axioms() {
712 crate::rings::finite::generic_tests::test_finite_ring_axioms(&Zn::new(&StaticRing::<i64>::RING, 128));
713 crate::rings::finite::generic_tests::test_finite_ring_axioms(&Zn::new(&StaticRing::<i64>::RING, 15));
714 crate::rings::finite::generic_tests::test_finite_ring_axioms(&Zn::new(&StaticRing::<i128>::RING, 1 << 32));
715}
716
717#[test]
718fn test_serialize() {
719 let ring = Zn::new(&StaticRing::<i64>::RING, 128);
720 crate::serialization::generic_tests::test_serialization(ring, ring.elements())
721}
722#[test]
723fn test_unreduced() {
724 let ZZbig = RustBigintRing::RING;
725 let ring = Zn::new(ZZbig, ZZbig.prod([72057594035352641, 72057594035418113, 72057594036334721, 72057594036945793, ].iter().map(|p| int_cast(*p, ZZbig, StaticRing::<i64>::RING))));
726 let value = ZZbig.get_ring().parse("26959946664284515451292772736873168147996033528710027874998326058050", 10).unwrap();
727
728 let x: ZnEl<RustBigintRing> = ZnEl(value);
729 assert!(ZZbig.is_lt(&x.0, &ring.get_ring().twice_modulus));
731
732 assert!(ring.is_one(&x));
733 assert!(ring.is_one(&ring.mul_ref(&x, &x)));
734 assert!(ring.eq_el(&x, &ring.mul_ref(&x, &x)));
735 assert_eq!("1", format!("{}", ring.format(&x)));
736}