feanor_math/seq/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875

mod conversion;
mod map;

pub mod step_by;
pub mod subvector;
pub mod permute;
pub mod sparse;

use std::ops::{Bound, Range, RangeBounds};

pub use conversion::{CloneElFn, VectorViewFn, VectorFnIter};
pub use map::{VectorFnMap, VectorViewMap, VectorViewMapMut};
use step_by::{StepBy, StepByFn};

use crate::ring::*;

///
/// A trait for objects that provides random-position read access to a 1-dimensional 
/// sequence (or vector) of elements. 
/// 
/// # Related traits
/// 
/// Other traits that represent sequences are 
///  - [`ExactSizeIterator`]: Returns elements by value; Since elements are moved, each
///    element is returned only once, and they must be queried in order.
///  - [`VectorFn`]: Also returns elements by value, but assumes that the underlying structure
///    produces a new element whenever a position is queried. This allows accessing positions
///    multiple times and in a random order, but depending on the represented items, it might
///    require cloning an element on each access.
/// 
/// Apart from that, there are also the subtraits [`VectorViewMut`] and [`SwappableVectorViewMut`]
/// that allow mutating the underlying sequence (but still don't allow moving elements out).
/// Finally, there is [`SelfSubvectorView`], which directly supports taking subvectors.
/// 
/// # Example
/// ```
/// # use feanor_math::seq::*;
/// fn compute_sum<V: VectorView<i32>>(vec: V) -> i32 {
///     let mut result = 0;
///     for i in 0..vec.len() {
///         result += vec.at(i);
///     }
///     return result;
/// }
/// assert_eq!(10, compute_sum([1, 2, 3, 4]));
/// assert_eq!(10, compute_sum(vec![1, 2, 3, 4]));
/// assert_eq!(10, compute_sum(&[1, 2, 3, 4, 5][..4]));
/// ```
/// 
pub trait VectorView<T: ?Sized> {

    fn len(&self) -> usize;
    fn at(&self, i: usize) -> &T;

    ///
    /// Returns a refernce to the `i`-th entry of the vector view, causing
    /// UB if `i >= self.len()`.
    /// 
    /// # Safety
    /// 
    /// Same as for [`slice::get_unchecked()`]. More concretely, calling this method with an out-of-bounds index 
    /// is undefined behavior even if the resulting reference is not used.
    /// 
    unsafe fn at_unchecked<'a>(&self, i: usize) -> &T {
        self.at(i)
    }

    ///
    /// Calls `op` with `self` if this vector view supports sparse access.
    /// Otherwise, `()` is returned.
    /// 
    /// This is basically a workaround that enables users to specialize on
    /// `V: VectorViewSparse`, even though specialization currently does not support
    /// this.
    /// 
    fn specialize_sparse<'a, Op: SparseVectorViewOperation<T>>(&'a self, _op: Op) -> Result<Op::Output<'a>, ()> {
        Err(())
    }

    ///
    /// Returns an iterator over all elements in this vector.
    /// 
    /// NB: Not called `iter()` to prevent name conflicts, since many containers (e.g. `Vec<T>`)
    /// have a function `iter()` and implement [`VectorView`]. As a result, whenever [`VectorView`]
    /// is in scope, calling any one `iter()` would require fully-qualified call syntax.
    /// 
    fn as_iter<'a>(&'a self) -> VectorFnIter<VectorViewFn<'a, Self, T>, &'a T> {
        VectorFnIter::new(self.as_fn())
    }

    ///
    /// Converts this vector into a [`VectorFn`] that yields references `&T`.
    /// 
    fn as_fn<'a>(&'a self) -> VectorViewFn<'a, Self, T> {
        VectorViewFn::new(self)
    }

    ///
    /// Moves this vector into a [`VectorFn`] that clones ring elements on access using
    /// the given ring.
    /// 
    fn into_clone_ring_els<R: RingStore>(self, ring: R) -> CloneElFn<Self, T, CloneRingEl<R>>
        where Self: Sized, T: Sized, R::Type: RingBase<Element = T>
    {
        self.into_clone_els_by(CloneRingEl(ring))
    }

    ///
    /// Converts this vector into a [`VectorFn`] that clones ring elements on access using
    /// the given ring.
    /// 
    fn clone_ring_els<'a, R: RingStore>(&'a self, ring: R) -> CloneElFn<&'a Self, T, CloneRingEl<R>>
        where T: Sized, 
            R::Type: RingBase<Element = T>
    {
        self.into_clone_ring_els(ring)
    }

    ///
    /// Moves this vector into a [`VectorFn`] that clones elements on access using
    /// the given function.
    /// 
    fn into_clone_els_by<F>(self, clone_entry: F) -> CloneElFn<Self, T, F>
        where Self: Sized, T: Sized, F: Fn(&T) -> T
    {
        CloneElFn::new(self, clone_entry)
    }

    ///
    /// Converts this vector into a [`VectorFn`] that clones elements on access using
    /// the given function.
    /// 
    fn clone_els_by<'a, F>(&'a self, clone_entry: F) -> CloneElFn<&'a Self, T, F>
        where T: Sized, F: Fn(&T) -> T
    {
        self.into_clone_els_by(clone_entry)
    }

    ///
    /// Moves this vector into a [`VectorFn`] that clones elements on access.
    /// 
    fn into_clone_els(self) -> CloneElFn<Self, T, CloneValue>
        where Self: Sized, T: Sized + Clone,
    {
        CloneElFn::new(self, CloneValue)
    }

    ///
    /// Converts this vector into a [`VectorFn`] that clones elements on access.
    /// 
    fn clone_els<'a>(&'a self) -> CloneElFn<&'a Self, T, CloneValue>
        where T: Sized + Clone,
    {
        self.into_clone_els()
    }

    ///
    /// Moves this vector into a [`VectorFn`] that copies elements on access.
    /// 
    fn into_copy_els(self) -> CloneElFn<Self, T, CloneValue>
        where Self: Sized, T: Sized + Copy,
    {
        CloneElFn::new(self, CloneValue)
    }

    ///
    /// Converts this vector into a [`VectorFn`] that copies elements on access.
    /// 
    fn copy_els<'a>(&'a self) -> CloneElFn<&'a Self, T, CloneValue>
        where T: Sized + Copy,
    {
        self.into_copy_els()
    }

    ///
    /// Creates a new [`VectorView`] whose elements are the results of the given function
    /// applied to the elements of this vector.
    /// 
    /// The most common use case is a projection on contained elements. Since [`VectorView`]s
    /// provide elements by reference, this is much less powerful than [`Iterator::map()`] or
    /// [`VectorFn::map_fn()`], since the function cannot return created elements.
    /// 
    /// Called `map_view()` to prevent name conflicts with [`Iterator::map()`].
    /// 
    /// # Example
    /// ```
    /// use feanor_math::seq::*;
    /// fn foo<V: VectorView<i64>>(data: V) {
    ///     // some logic
    /// }
    /// let data = vec![Some(1), Some(2), Some(3)];
    /// // the `as_ref()` is necessary, since we have to return a reference
    /// foo(data.map_view(|x| x.as_ref().unwrap()));
    /// ```
    /// 
    fn map_view<F: for<'a> Fn(&'a T) -> &'a U, U>(self, func: F) -> VectorViewMap<Self, T, U, F>
        where Self: Sized
    {
        VectorViewMap::new(self, func)
    }

    ///
    /// 
    /// Called `step_by_view()` to prevent name conflicts with [`Iterator::step_by()`].
    /// 
    fn step_by_view(self, step_by: usize) -> StepBy<Self, T>
        where Self: Sized
    {
        StepBy::new(self, step_by)
    }
}

///
/// View on a sequence type that stores its data in a sparse format.
/// This clearly requires that the underlying type `T` has some notion
/// of a "zero" element.
/// 
pub trait VectorViewSparse<T: ?Sized>: VectorView<T> {

    type Iter<'a>: Iterator<Item = (usize, &'a T)>
        where Self: 'a, 
            T: 'a;

    ///
    /// Returns an iterator over all elements of the sequence with their indices
    /// that are "nonzero" (`T` must have an appropriate notion of zero).
    /// 
    /// # Example
    /// ```
    /// # use feanor_math::seq::*;
    /// # use feanor_math::ring::*;
    /// # use feanor_math::primitive_int::*;
    /// # use feanor_math::seq::sparse::*;
    /// let mut vector = SparseMapVector::new(10, StaticRing::<i64>::RING);
    /// *vector.at_mut(2) = 100;
    /// assert_eq!(vec![(2, 100)], vector.nontrivial_entries().map(|(i, x)| (i, *x)).collect::<Vec<_>>());
    /// ```
    /// 
    fn nontrivial_entries<'a>(&'a self) -> Self::Iter<'a>;
}

///
/// Operation that operates on a [`VectorViewSparse`].
/// 
/// Used as a workaround for specialization, together with [`VectorView::specialize_sparse()`].
/// 
/// TODO: on next breaking update (unfortunate that I missed 3.0.0), replace this by
/// the more powerful workaround technique as used for finite rings in [`crate::specialization`].
/// 
pub trait SparseVectorViewOperation<T: ?Sized> {

    type Output<'a>
        where Self: 'a;

    fn execute<'a, V: 'a + VectorViewSparse<T> + Clone>(self, vector: V) -> Self::Output<'a>
        where Self: 'a;
}

fn range_within<R: RangeBounds<usize>>(len: usize, range: R) -> Range<usize> {
    let start = match range.start_bound() {
        Bound::Unbounded => 0,
        Bound::Included(i) => {
            assert!(*i <= len);
            *i
        },
        Bound::Excluded(i) => {
            assert!(*i <= len);
            *i + 1
        }
    };
    let end = match range.end_bound() {
        Bound::Unbounded => len,
        Bound::Included(i) => {
            assert!(*i >= start);
            assert!(*i < len);
            *i + 1
        },
        Bound::Excluded(i) => {
            assert!(*i >= start);
            assert!(*i <= len);
            *i
        }
    };
    return start..end;
}

///
/// Trait for [`VectorView`]s that support shrinking, i.e. transforming the
/// vector into a subvector of itself.
/// 
/// Note that you can easily get a subvector of a vector by using [`subvector::SubvectorView`],
/// but this will wrap the original type. This makes [`subvector::SubvectorView`] unsuitable
/// for some applications, like recursive algorithms.
/// 
/// Note also that [`SelfSubvectorView::restrict()`] consumes the current object, thus
/// it is most useful for vectors that implement [`Clone`]/[`Copy`], in particular for references
/// to vectors.
/// 
/// This is the [`VectorView`]-counterpart to [`SelfSubvectorFn`].
/// 
/// # Example
/// ```
/// # use feanor_math::seq::*;
/// # use feanor_math::seq::subvector::*;
/// fn compute_sum_recursive<V: SelfSubvectorView<i32>>(vec: V) -> i32 {
///     if vec.len() == 0 {
///         0
///     } else {
///         *vec.at(0) + compute_sum_recursive(vec.restrict(1..))
///     }
/// }
/// assert_eq!(10, compute_sum_recursive(SubvectorView::new([1, 2, 3, 4])));
/// assert_eq!(10, compute_sum_recursive(SubvectorView::new(vec![1, 2, 3, 4])));
/// assert_eq!(10, compute_sum_recursive(SubvectorView::new(&[1, 2, 3, 4, 5][..4])));
/// ```
/// 
pub trait SelfSubvectorView<T: ?Sized>: Sized + VectorView<T> {

    ///
    /// Returns a [`SelfSubvectorView`] that represents the elements within the given range
    /// of this vector.
    /// 
    fn restrict_full(self, range: Range<usize>) -> Self;

    ///
    /// Returns a [`SelfSubvectorView`] that represents the elements within the given range
    /// of this vector.
    /// 
    fn restrict<R: RangeBounds<usize>>(self, range: R) -> Self {
        let range_full = range_within(self.len(), range);
        self.restrict_full(range_full)
    }
}

impl<T: ?Sized, V: ?Sized + VectorView<T>> VectorView<T> for Box<V> {

    fn len(&self) -> usize {
        (**self).len()
    }

    fn at(&self, i: usize) -> &T {
        (**self).at(i)
    }

    unsafe fn at_unchecked(&self, i: usize) -> &T {
        (**self).at_unchecked(i)
    }

    fn specialize_sparse<'a, Op: SparseVectorViewOperation<T>>(&'a self, op: Op) -> Result<Op::Output<'a>, ()> {
        (**self).specialize_sparse(op)
    }
}

impl<T: ?Sized, V: ?Sized + VectorViewMut<T>> VectorViewMut<T> for Box<V> {

    fn at_mut(&mut self, i: usize) -> &mut T {
        (**self).at_mut(i)
    }

    unsafe fn at_unchecked_mut<'a>(&mut self, i: usize) -> &mut T {
        (**self).at_unchecked_mut(i)
    }
}

impl<T: ?Sized, V: ?Sized + VectorViewSparse<T>> VectorViewSparse<T> for Box<V> {
    
    type Iter<'b> = V::Iter<'b>
        where Self: 'b, T: 'b;

    fn nontrivial_entries<'b>(&'b self) -> Self::Iter<'b> {
        (**self).nontrivial_entries()
    }
}

impl<'a, T: ?Sized, V: ?Sized + VectorView<T>> VectorView<T> for &'a V {
    fn len(&self) -> usize {
        (**self).len()
    }

    fn at(&self, i: usize) -> &T {
        (**self).at(i)
    }

    unsafe fn at_unchecked(&self, i: usize) -> &T {
        (**self).at_unchecked(i)
    }

    fn specialize_sparse<'b, Op: SparseVectorViewOperation<T>>(&'b self, op: Op) -> Result<Op::Output<'b>, ()> {
        (**self).specialize_sparse(op)
    }
}

impl<'a, T: ?Sized, V: ?Sized + VectorViewSparse<T>> VectorViewSparse<T> for &'a V {
    type Iter<'b> = V::Iter<'b>
        where Self: 'b, T: 'b;

    fn nontrivial_entries<'b>(&'b self) -> Self::Iter<'b> {
        (**self).nontrivial_entries()
    }
}

impl<'a, T: ?Sized, V: ?Sized + VectorView<T>> VectorView<T> for &'a mut V {

    fn len(&self) -> usize {
        (**self).len()
    }

    fn at(&self, i: usize) -> &T {
        (**self).at(i)
    }

    unsafe fn at_unchecked(&self, i: usize) -> &T {
        (**self).at_unchecked(i)
    }

    fn specialize_sparse<'b, Op: SparseVectorViewOperation<T>>(&'b self, op: Op) -> Result<Op::Output<'b>, ()> {
        (**self).specialize_sparse(op)
    }
}

impl<'a, T: ?Sized, V: ?Sized + VectorViewMut<T>> VectorViewMut<T> for &'a mut V {

    fn at_mut(&mut self, i: usize) -> &mut T {
        (**self).at_mut(i)
    }

    unsafe fn at_unchecked_mut(&mut self, i: usize) -> &mut T {
        (**self).at_unchecked_mut(i)
    }
}

impl<'a, T: ?Sized, V: ?Sized + VectorViewSparse<T>> VectorViewSparse<T> for &'a mut V {

    type Iter<'b> = V::Iter<'b>
        where Self: 'b, T: 'b;

    fn nontrivial_entries<'b>(&'b self) -> Self::Iter<'b> {
        (**self).nontrivial_entries()
    }
}

impl<'a, T: ?Sized, V: ?Sized + SwappableVectorViewMut<T>> SwappableVectorViewMut<T> for &'a mut V {

    fn swap(&mut self, i: usize, j: usize) {
        (**self).swap(i, j)
    }
}

///
/// A trait for [`VectorView`]s that allow mutable access to one element at a time.
/// 
/// Note that a fundamental difference to many containers (like `&mut [T]`) is that
/// this trait only defines functions that give a mutable reference to one element at
/// a time. In particular, it is intentionally impossible to have a mutable reference
/// to multiple elements at once. This enables implementations like sparse vectors,
/// e.g. [`sparse::SparseMapVector`].
/// 
pub trait VectorViewMut<T: ?Sized>: VectorView<T> {

    fn at_mut(&mut self, i: usize) -> &mut T;

    fn map_mut<F_const: for<'a> Fn(&'a T) -> &'a U, F_mut: for<'a> FnMut(&'a mut T) -> &'a mut U, U>(self, map_const: F_const, map_mut: F_mut) -> VectorViewMapMut<Self, T, U, F_const, F_mut>
        where Self: Sized
    {
        VectorViewMapMut::new(self, (map_const, map_mut))
    }

    ///
    /// Returns a refernce to the `i`-th entry of the vector view, causing
    /// UB if `i >= self.len()`.
    /// 
    /// # Safety
    /// 
    /// Same as for [`slice::get_unchecked_mut()`]. More concretely, calling this method with an out-of-bounds index 
    /// is undefined behavior even if the resulting reference is not used.
    /// 
    unsafe fn at_unchecked_mut<'a>(&mut self, i: usize) -> &mut T {
        self.at_mut(i)
    }
}

///
/// A trait for [`VectorViewMut`]s that support swapping of two elements.
/// 
/// Since [`VectorViewMut`] is not necessarily able to return two mutable
/// references to different entries, supporting swapping is indeed a stronger
/// property than just being a [`VectorViewMut`].
/// 
pub trait SwappableVectorViewMut<T: ?Sized>: VectorViewMut<T> {

    fn swap(&mut self, i: usize, j: usize);
}

///
/// A trait for objects that provides random-position access to a 1-dimensional 
/// sequence (or vector) of elements that returned by value. 
/// 
/// # Related traits
/// 
/// Other traits that represent sequences are 
///  - [`ExactSizeIterator`]: Also returns elements by value; However, to avoid copying elements,
///    an `ExactSizeIterator` returns every item only once, and only in the order of the underlying
///    vector.
///  - [`VectorView`]: Returns only references to the underlying data, but also supports random-position
///    access. Note that `VectorView<T>` is not the same as `VectorFn<&T>`, since the lifetime of returned
///    references `&T` in the case of `VectorView` is the lifetime of the vector, but in the case of 
///    `VectorFn`, it must be a fixed lifetime parameter.
/// 
/// Finally, there is the subtrait [`SelfSubvectorFn`], which directly supports taking subvectors.
/// 
/// # Example
/// ```
/// # use feanor_math::seq::*;
/// fn compute_sum<V: VectorFn<usize>>(vec: V) -> usize {
///     let mut result = 0;
///     for i in 0..vec.len() {
///         result += vec.at(i);
///     }
///     return result;
/// }
/// assert_eq!(10, compute_sum(1..5));
/// assert_eq!(10, compute_sum([1, 2, 3, 4].copy_els()));
/// assert_eq!(10, compute_sum(vec![1, 2, 3, 4].copy_els()));
/// assert_eq!(10, compute_sum((&[1, 2, 3, 4, 5][..4]).copy_els()));
/// ```
/// 
pub trait VectorFn<T> {

    fn len(&self) -> usize;
    fn at(&self, i: usize) -> T;

    ///
    /// Produces an iterator over the elements of this [`VectorFn`].
    /// 
    /// This transfers ownership of the object to the iterator. If this
    /// is not desired, consider using [`VectorFn::iter()`].
    /// 
    /// Note that [`VectorFn`]s do not necessarily implement [`IntoIterator`] and
    /// instead use this function. The reason for that is twofold:
    ///  - the only way of making all types implementing [`VectorFn`]s to also implement [`IntoIterator`]
    ///    would be to define `VectorFn` as a subtrait of `IntoIterator`. However, this conflicts with the
    ///    decision to have [`VectorFn`] have the element type as generic parameter, since [`IntoIterator`] 
    ///    uses an associated type.
    ///  - If the above problem could somehow be circumvented, for types that implement both [`Iterator`]
    ///    and [`VectorFn`] (like [`Range`]), calling `into_iter()` would then require fully-qualified call
    ///    syntax, which is very unwieldy.
    /// 
    fn into_iter(self) -> VectorFnIter<Self, T>
        where Self: Sized
    {
        VectorFnIter::new(self)
    }

    ///
    /// Produces an iterator over the elements of this [`VectorFn`].
    /// 
    /// See also [`VectorFn::into_iter()`] if a transfer of ownership is required.
    /// 
    fn iter<'a>(&'a self) -> VectorFnIter<&'a Self, T> {
        self.into_iter()
    }

    ///
    /// NB: Named `map_fn` to avoid conflicts with `map` of [`Iterator`]
    /// 
    fn map_fn<F: Fn(T) -> U, U>(self, func: F) -> VectorFnMap<Self, T, U, F>
        where Self: Sized
    {
        VectorFnMap::new(self, func)
    }

    ///
    /// NB: Named `step_by_fn` to avoid conflicts with `step_by` of [`Iterator`]
    /// 
    fn step_by_fn(self, step_by: usize) -> StepByFn<Self, T>
        where Self: Sized
    {
        StepByFn::new(self, step_by)
    }
}

///
/// Trait for [`VectorFn`]s that support shrinking, i.e. transforming the
/// vector into a subvector of itself.
/// 
/// Note that you can easily get a subvector of a vector by using [`subvector::SubvectorFn`],
/// but this will wrap the original type. This makes [`subvector::SubvectorFn`] unsuitable
/// for some applications, like recursive algorithms.
/// 
/// Note also that [`SelfSubvectorFn::restrict()`] consumes the current object, thus
/// it is most useful for vectors that implement [`Clone`]/[`Copy`], in particular for references
/// to vectors.
/// 
/// This is the [`VectorFn`]-counterpart to [`SelfSubvectorView`].
/// 
/// ## Default impls
/// 
/// As opposed to [`VectorView`], there are no implementations of [`VectorFn`] for standard
/// containers like `Vec<T>`, `&[T]` etc. This is because it is not directly clear whether elements
/// should be cloned on access, or whether a `VectorFn<&T>` is desired. Instead, use the appropriate
/// functions [`VectorView::as_fn()`] or [`VectorView::clone_els()`] to create a [`VectorFn`].
/// An exception is made for `Range<usize>`, which directly implements `VectorFn`. This allows
/// for yet another way of creating arbitrary `VectorFn`s by using `(0..len).map_fn(|i| ...)`.
/// 
/// # Example
/// ```
/// # use feanor_math::seq::*;
/// # use feanor_math::seq::subvector::*;
/// fn compute_sum_recursive<V: SelfSubvectorFn<usize>>(vec: V) -> usize {
///     if vec.len() == 0 {
///         0
///     } else {
///         vec.at(0) + compute_sum_recursive(vec.restrict(1..))
///     }
/// }
/// assert_eq!(10, compute_sum_recursive(SubvectorFn::new([1, 2, 3, 4].copy_els())));
/// assert_eq!(10, compute_sum_recursive(SubvectorFn::new(vec![1, 2, 3, 4].copy_els())));
/// assert_eq!(10, compute_sum_recursive(SubvectorFn::new((&[1, 2, 3, 4, 5][..4]).copy_els())));
/// ```
/// 
pub trait SelfSubvectorFn<T>: Sized + VectorFn<T> {

    ///
    /// Returns a [`SelfSubvectorFn`] that represents the elements within the given range
    /// of this vector.
    /// 
    fn restrict_full(self, range: Range<usize>) -> Self;

    ///
    /// Returns a [`SelfSubvectorFn`] that represents the elements within the given range
    /// of this vector.
    /// 
    fn restrict<R: RangeBounds<usize>>(self, range: R) -> Self {
        let range_full = range_within(self.len(), range);
        self.restrict_full(range_full)
    }
}

impl<'a, T, V: ?Sized + VectorFn<T>> VectorFn<T> for &'a V {

    fn len(&self) -> usize {
        (**self).len()
    }

    fn at(&self, i: usize) -> T {
        (**self).at(i)
    }
}

impl<T> VectorView<T> for [T] {

    fn len(&self) -> usize {
        <[T]>::len(self)
    }

    fn at(&self, i: usize) -> &T {
        &self[i]
    }

    unsafe fn at_unchecked(&self, i: usize) -> &T {
        self.get_unchecked(i)
    }
}

impl<'a, T> SelfSubvectorView<T> for &'a [T] {

    fn restrict_full(self, range: Range<usize>) -> Self {
        &self[range]
    }
}

impl<'a, T> SelfSubvectorView<T> for &'a mut [T] {

    fn restrict_full(self, range: Range<usize>) -> Self {
        &mut self[range]
    }
}

impl<T> VectorViewMut<T> for [T] {

    fn at_mut(&mut self, i: usize) -> &mut T {
        &mut self[i]
    }

    unsafe fn at_unchecked_mut<'a>(&mut self, i: usize) -> &mut T {
        self.get_unchecked_mut(i)
    }
}

impl<T> SwappableVectorViewMut<T> for [T] {

    fn swap(&mut self, i: usize, j: usize) {
        <[T]>::swap(self, i, j)
    }
}

impl<T> VectorView<T> for Vec<T> {

    fn len(&self) -> usize {
        <[T]>::len(self)
    }

    fn at(&self, i: usize) -> &T {
        &self[i]
    }

    unsafe fn at_unchecked(&self, i: usize) -> &T {
        self.get_unchecked(i)
    }
}

impl<T> VectorViewMut<T> for Vec<T> {

    fn at_mut(&mut self, i: usize) -> &mut T {
        &mut self[i]
    }

    unsafe fn at_unchecked_mut<'a>(&mut self, i: usize) -> &mut T {
        self.get_unchecked_mut(i)
    }
}

impl<T> SwappableVectorViewMut<T> for Vec<T> {

    fn swap(&mut self, i: usize, j: usize) {
        <[T]>::swap(self, i, j)
    }
}

impl<T, const N: usize> VectorView<T> for [T; N] {

    fn len(&self) -> usize {
        N
    }

    fn at(&self, i: usize) -> &T {
        &self[i]
    }

    unsafe fn at_unchecked(&self, i: usize) -> &T {
        self.get_unchecked(i)
    }
}

impl<T, const N: usize> VectorViewMut<T> for [T; N] {

    fn at_mut(&mut self, i: usize) -> &mut T {
        &mut self[i]
    }

    unsafe fn at_unchecked_mut<'a>(&mut self, i: usize) -> &mut T {
        self.get_unchecked_mut(i)
    }
}

impl<T, const N: usize> SwappableVectorViewMut<T> for [T; N] {

    fn swap(&mut self, i: usize, j: usize) {
        <[T]>::swap(self, i, j)
    }
}

///
/// # Why no impl for `Range<i64>` etc?
/// 
/// It is a common pattern to write `(0..n).map_fn(|x| ...)` to create general
/// [`VectorFn`]s. If we provide impls for multiple [`Range`]s, then in this
/// case however, explicit type arguments will be necessary. Instead, if you
/// require a [`VectorFn`] over another numerical type `T`, consider using
/// `((start as usize)..(end as usize)).map_fn(|x| x as T)`.
/// 
impl VectorFn<usize> for Range<usize> {

    fn at(&self, i: usize) -> usize {
        assert!(i < <_ as VectorFn<_>>::len(self));
        self.start + i
    }

    fn len(&self) -> usize {
        self.end - self.start
    }
}

///
/// A wrapper around a [`RingStore`] that is callable with signature `(&El<R>) -> El<R>`, 
/// and will clone the given ring element when called.
/// 
/// In order to be compatible with [`crate::iters::multi_cartesian_product()`], it
/// additionally is also callable with signature `(usize, &El<R>) -> El<R>`. In this
/// case, the first parameter is ignored.
/// 
#[derive(Copy, Clone)]
pub struct CloneRingEl<R: RingStore>(pub R);

impl<'a, R: RingStore> FnOnce<(&'a El<R>,)> for CloneRingEl<R> {

    type Output = El<R>;

    extern "rust-call" fn call_once(self, args: (&'a El<R>,)) -> Self::Output {
        self.call(args)
    }
}

impl<'a, R: RingStore> FnMut<(&'a El<R>,)> for CloneRingEl<R> {

    extern "rust-call" fn call_mut(&mut self, args: (&'a El<R>,)) -> Self::Output {
        self.call(args)
    }
}

impl<'a, R: RingStore> Fn<(&'a El<R>,)> for CloneRingEl<R> {

    extern "rust-call" fn call(&self, args: (&'a El<R>,)) -> Self::Output {
        self.0.clone_el(args.0)
    }
}

impl<'a, R: RingStore> FnOnce<(usize, &'a El<R>,)> for CloneRingEl<R> {

    type Output = El<R>;

    extern "rust-call" fn call_once(self, args: (usize, &'a El<R>,)) -> Self::Output {
        self.call(args)
    }
}

impl<'a, R: RingStore> FnMut<(usize, &'a El<R>,)> for CloneRingEl<R> {

    extern "rust-call" fn call_mut(&mut self, args: (usize, &'a El<R>,)) -> Self::Output {
        self.call(args)
    }
}

impl<'a, R: RingStore> Fn<(usize, &'a El<R>,)> for CloneRingEl<R> {

    extern "rust-call" fn call(&self, args: (usize, &'a El<R>,)) -> Self::Output {
        self.0.clone_el(args.1)
    }
}

///
/// Callable struct that wraps [`Clone::clone()`].
/// 
#[derive(Copy, Clone)]
pub struct CloneValue;

impl<'a, T: Clone> FnOnce<(&'a T,)> for CloneValue {

    type Output = T;

    extern "rust-call" fn call_once(self, args: (&'a T,)) -> Self::Output {
        self.call(args)
    }
}

impl<'a, T: Clone> FnMut<(&'a T,)> for CloneValue {

    extern "rust-call" fn call_mut(&mut self, args: (&'a T,)) -> Self::Output {
        self.call(args)
    }
}

impl<'a, T: Clone> Fn<(&'a T,)> for CloneValue {

    extern "rust-call" fn call(&self, args: (&'a T,)) -> Self::Output {
        args.0.clone()
    }
}

#[test]
fn test_vector_fn_iter() {
    let vec = vec![1, 2, 4, 8, 16];
    assert_eq!(vec, vec.as_fn().into_iter().copied().collect::<Vec<_>>());
}