use std::alloc::Allocator;
use std::alloc::Global;
use crate::algorithms::matmul::ComputeInnerProduct;
use crate::iters::multi_cartesian_product;
use crate::iters::MultiProduct;
use crate::seq::VectorView;
use crate::integer::*;
use crate::divisibility::DivisibilityRingStore;
use crate::rings::zn::*;
use crate::specialization::*;
use crate::primitive_int::*;
pub struct ZnBase<C: RingStore, J: RingStore, A: Allocator + Clone = Global>
where C::Type: ZnRing + CanHomFrom<J::Type>,
J::Type: IntegerRing,
<C::Type as ZnRing>::IntegerRingBase: IntegerRing + CanIsoFromTo<J::Type>
{
components: Vec<C>,
total_ring: zn_big::Zn<J>,
unit_vectors: Vec<El<zn_big::Zn<J>>>,
element_allocator: A
}
pub type Zn<C, J, A = Global> = RingValue<ZnBase<C, J, A>>;
impl<C: RingStore, J: RingStore> Zn<C, J, Global>
where C::Type: ZnRing + CanHomFrom<J::Type>,
J::Type: IntegerRing,
<C::Type as ZnRing>::IntegerRingBase: IntegerRing + CanIsoFromTo<J::Type>
{
pub fn new(summands: Vec<C>, large_integers: J) -> Self {
Self::new_with(summands, large_integers, Global)
}
}
impl<J: RingStore> Zn<zn_64::Zn, J, Global>
where zn_64::ZnBase: CanHomFrom<J::Type>,
J::Type: IntegerRing
{
pub fn create_from_primes(primes: Vec<i64>, large_integers: J) -> Self {
Self::new_with(primes.into_iter().map(|p| zn_64::Zn::new(p as u64)).collect(), large_integers, Global)
}
}
impl<C: RingStore, J: RingStore, A: Allocator + Clone> Zn<C, J, A>
where C::Type: ZnRing + CanHomFrom<J::Type>,
J::Type: IntegerRing,
<C::Type as ZnRing>::IntegerRingBase: IntegerRing + CanIsoFromTo<J::Type>
{
#[stability::unstable(feature = "enable")]
pub fn new_with(summands: Vec<C>, large_integers: J, element_allocator: A) -> Self {
assert!(summands.len() > 0);
let total_modulus = large_integers.prod(
summands.iter().map(|R| R.integer_ring().can_iso(&large_integers).unwrap().map_ref(R.modulus()))
);
let total_ring = zn_big::Zn::new(large_integers, total_modulus);
let ZZ = total_ring.integer_ring();
for R in &summands {
let R_modulus = R.integer_ring().can_iso(ZZ).unwrap().map_ref(R.modulus());
assert!(
ZZ.is_one(&algorithms::eea::signed_gcd(ZZ.checked_div(total_ring.modulus(), &R_modulus).unwrap(), R_modulus, ZZ)),
"all moduli must be coprime"
);
assert!(R.integer_ring().get_ring() == summands[0].integer_ring().get_ring());
}
let unit_vectors = summands.iter()
.map(|R: &C| (R, ZZ.checked_div(total_ring.modulus(), &R.integer_ring().can_iso(ZZ).unwrap().map_ref(R.modulus())).unwrap()))
.map(|(R, n)| (int_cast(R.any_lift(R.invert(&R.coerce(&ZZ, ZZ.clone_el(&n))).unwrap()), ZZ, R.integer_ring()), n))
.map(|(n_mod_inv, n)| total_ring.mul(total_ring.coerce(&ZZ, n_mod_inv), total_ring.coerce(&ZZ, n)))
.collect();
RingValue::from(ZnBase {
components: summands,
total_ring: total_ring,
unit_vectors: unit_vectors,
element_allocator: element_allocator
})
}
}
impl<C: RingStore, J: RingStore, A: Allocator + Clone> Zn<C, J, A>
where C::Type: ZnRing + CanHomFrom<J::Type>,
J::Type: IntegerRing,
<C::Type as ZnRing>::IntegerRingBase: IntegerRing + CanIsoFromTo<J::Type>
{
pub fn from_congruence<I>(&self, el: I) -> ZnEl<C, A>
where I: IntoIterator<Item = El<C>>
{
self.get_ring().from_congruence(el)
}
pub fn get_congruence<'a>(&self, el: &'a ZnEl<C, A>) -> impl 'a + VectorView<El<C>> {
self.get_ring().get_congruence(el)
}
}
impl<C: RingStore, J: RingStore, A: Allocator + Clone> ZnBase<C, J, A>
where C::Type: ZnRing + CanHomFrom<J::Type>,
J::Type: IntegerRing,
<C::Type as ZnRing>::IntegerRingBase: IntegerRing + CanIsoFromTo<J::Type>
{
pub fn from_congruence<I>(&self, el: I) -> ZnEl<C, A>
where I: IntoIterator<Item = El<C>>
{
let mut data = Vec::with_capacity_in(self.len(), self.element_allocator.clone());
data.extend(el);
assert_eq!(self.len(), data.len());
ZnEl { data }
}
pub fn get_congruence<'a>(&self, el: &'a ZnEl<C, A>) -> impl 'a + VectorView<El<C>> {
&el.data as &[El<C>]
}
}
impl<C: RingStore, J: RingStore, A: Allocator + Clone> VectorView<C> for Zn<C, J, A>
where C::Type: ZnRing + CanHomFrom<J::Type>,
J::Type: IntegerRing,
<C::Type as ZnRing>::IntegerRingBase: IntegerRing + CanIsoFromTo<J::Type>
{
fn len(&self) -> usize {
self.get_ring().len()
}
fn at(&self, index: usize) -> &C {
&self.get_ring().at(index)
}
}
impl<C: RingStore, J: RingStore, A: Allocator + Clone> VectorView<C> for ZnBase<C, J, A>
where C::Type: ZnRing + CanHomFrom<J::Type>,
J::Type: IntegerRing,
<C::Type as ZnRing>::IntegerRingBase: IntegerRing + CanIsoFromTo<J::Type>
{
fn len(&self) -> usize {
self.components.len()
}
fn at(&self, index: usize) -> &C {
&self.components[index]
}
}
pub struct ZnEl<C: RingStore, A: Allocator + Clone>
where C::Type: ZnRing
{
data: Vec<El<C>, A>
}
impl<C: RingStore, J: RingStore, A: Allocator + Clone> RingBase for ZnBase<C, J, A>
where C::Type: ZnRing + CanHomFrom<J::Type>,
J::Type: IntegerRing,
<C::Type as ZnRing>::IntegerRingBase: IntegerRing + CanIsoFromTo<J::Type>
{
type Element = ZnEl<C, A>;
fn clone_el(&self, val: &Self::Element) -> Self::Element {
let mut data = Vec::with_capacity_in(self.len(), self.element_allocator.clone());
data.extend((0..self.len()).map(|i| self.at(i).clone_el(val.data.at(i))));
ZnEl { data }
}
fn add_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element) {
for i in 0..self.components.len() {
self.components[i].add_assign_ref(&mut lhs.data[i], &rhs.data[i])
}
}
fn add_assign(&self, lhs: &mut Self::Element, rhs: Self::Element) {
for (i, el) in (0..self.components.len()).zip(rhs.data.into_iter()) {
self.components[i].add_assign_ref(&mut lhs.data[i], &el)
}
}
fn sub_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element) {
for i in 0..self.components.len() {
self.components[i].sub_assign_ref(&mut lhs.data[i], &rhs.data[i])
}
}
fn negate_inplace(&self, lhs: &mut Self::Element) {
for i in 0..self.components.len() {
self.components[i].negate_inplace(&mut lhs.data[i])
}
}
fn mul_assign(&self, lhs: &mut Self::Element, rhs: Self::Element) {
for (i, el) in (0..self.components.len()).zip(rhs.data.into_iter()) {
self.components[i].mul_assign_ref(&mut lhs.data[i], &el)
}
}
fn mul_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element) {
for i in 0..self.components.len() {
self.components[i].mul_assign_ref(&mut lhs.data[i], &rhs.data[i])
}
}
fn from_int(&self, value: i32) -> Self::Element {
self.from_congruence((0..self.len()).map(|i| self.components[i].get_ring().from_int(value)))
}
fn mul_assign_int(&self, lhs: &mut Self::Element, rhs: i32) {
for i in 0..self.components.len() {
self.components[i].int_hom().mul_assign_map(&mut lhs.data[i], rhs)
}
}
fn eq_el(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool {
(0..self.components.len()).zip(lhs.data.iter()).zip(rhs.data.iter()).all(|((i, l), r)| self.components[i].eq_el(l, r))
}
fn is_zero(&self, value: &Self::Element) -> bool {
(0..self.components.len()).zip(value.data.iter()).all(|(i, x)| self.components[i].is_zero(x))
}
fn is_one(&self, value: &Self::Element) -> bool {
(0..self.components.len()).zip(value.data.iter()).all(|(i, x)| self.components[i].is_one(x))
}
fn is_neg_one(&self, value: &Self::Element) -> bool {
(0..self.components.len()).zip(value.data.iter()).all(|(i, x)| self.components[i].is_neg_one(x))
}
fn is_commutative(&self) -> bool { true }
fn is_noetherian(&self) -> bool { true }
fn dbg_within<'a>(&self, value: &Self::Element, out: &mut std::fmt::Formatter<'a>, _: EnvBindingStrength) -> std::fmt::Result {
self.total_ring.get_ring().dbg(&RingRef::new(self).can_iso(&self.total_ring).unwrap().map_ref(value), out)
}
fn characteristic<I: RingStore + Copy>(&self, ZZ: I) -> Option<El<I>>
where I::Type: IntegerRing
{
self.size(ZZ)
}
fn is_approximate(&self) -> bool { false }
}
impl<C: RingStore, J: RingStore, A: Allocator + Clone> Clone for ZnBase<C, J, A>
where C::Type: ZnRing + CanHomFrom<J::Type>,
J::Type: IntegerRing,
<C::Type as ZnRing>::IntegerRingBase: IntegerRing + CanIsoFromTo<J::Type>,
C: Clone,
J: Clone
{
fn clone(&self) -> Self {
ZnBase {
components: self.components.clone(),
total_ring: self.total_ring.clone(),
unit_vectors: self.unit_vectors.iter().map(|e| self.total_ring.clone_el(e)).collect(),
element_allocator: self.element_allocator.clone()
}
}
}
impl<C1: RingStore, J1: RingStore, C2: RingStore, J2: RingStore, A1: Allocator + Clone, A2: Allocator + Clone> CanHomFrom<ZnBase<C2, J2, A2>> for ZnBase<C1, J1, A1>
where C1::Type: ZnRing + CanHomFrom<C2::Type> + CanHomFrom<J1::Type>,
<C1::Type as ZnRing>::IntegerRingBase: IntegerRing + CanIsoFromTo<J1::Type>,
C2::Type: ZnRing + CanHomFrom<J2::Type>,
<C2::Type as ZnRing>::IntegerRingBase: IntegerRing + CanIsoFromTo<J2::Type>,
J1::Type: IntegerRing,
J2::Type: IntegerRing
{
type Homomorphism = Vec<<C1::Type as CanHomFrom<C2::Type>>::Homomorphism>;
fn has_canonical_hom(&self, from: &ZnBase<C2, J2, A2>) -> Option<Self::Homomorphism> {
if self.components.len() == from.components.len() {
self.components.iter()
.zip(from.components.iter())
.map(|(s, f): (&C1, &C2)| s.get_ring().has_canonical_hom(f.get_ring()).ok_or(()))
.collect::<Result<Self::Homomorphism, ()>>()
.ok()
} else {
None
}
}
fn map_in_ref(&self, from: &ZnBase<C2, J2, A2>, el: &ZnEl<C2, A2>, hom: &Self::Homomorphism) -> Self::Element {
assert_eq!(from.len(), el.data.len());
self.from_congruence((0..self.len()).map(|i|
self.at(i).get_ring().map_in_ref(from.at(i).get_ring(), el.data.at(i), &hom[i])
))
}
fn map_in(&self, from: &ZnBase<C2, J2, A2>, el: ZnEl<C2, A2>, hom: &Self::Homomorphism) -> Self::Element {
self.map_in_ref(from, &el, hom)
}
}
impl<C: RingStore, J: RingStore, A: Allocator + Clone> PartialEq for ZnBase<C, J, A>
where C::Type: ZnRing + CanHomFrom<J::Type>,
<C::Type as ZnRing>::IntegerRingBase: IntegerRing + CanIsoFromTo<J::Type>,
J::Type: IntegerRing
{
fn eq(&self, other: &Self) -> bool {
self.components.len() == other.components.len() && self.components.iter().zip(other.components.iter()).all(|(R1, R2)| R1.get_ring() == R2.get_ring())
}
}
impl<C1: RingStore, J1: RingStore, C2: RingStore, J2: RingStore, A1: Allocator + Clone, A2: Allocator + Clone> CanIsoFromTo<ZnBase<C2, J2, A2>> for ZnBase<C1, J1, A1>
where C1::Type: ZnRing + CanIsoFromTo<C2::Type> + CanHomFrom<J1::Type>,
<C1::Type as ZnRing>::IntegerRingBase: IntegerRing + CanIsoFromTo<J1::Type>,
C2::Type: ZnRing + CanHomFrom<J2::Type>,
<C2::Type as ZnRing>::IntegerRingBase: IntegerRing + CanIsoFromTo<J2::Type>,
J1::Type: IntegerRing,
J2::Type: IntegerRing
{
type Isomorphism = Vec<<C1::Type as CanIsoFromTo<C2::Type>>::Isomorphism>;
fn has_canonical_iso(&self, from: &ZnBase<C2, J2, A2>) -> Option<Self::Isomorphism> {
if self.components.len() == from.components.len() {
self.components.iter()
.zip(from.components.iter())
.map(|(s, f): (&C1, &C2)| s.get_ring().has_canonical_iso(f.get_ring()).ok_or(()))
.collect::<Result<Self::Isomorphism, ()>>()
.ok()
} else {
None
}
}
fn map_out(&self, from: &ZnBase<C2, J2, A2>, el: ZnEl<C1, A1>, iso: &Self::Isomorphism) -> ZnEl<C2, A2> {
assert_eq!(self.len(), el.data.len());
from.from_congruence((0..from.len()).map(|i|
self.at(i).get_ring().map_out(from.at(i).get_ring(), self.at(i).clone_el(el.data.at(i)), &iso[i])
))
}
}
impl<C: RingStore, J: RingStore, K: RingStore, A: Allocator + Clone> CanHomFrom<zn_big::ZnBase<K>> for ZnBase<C, J, A>
where C::Type: ZnRing + CanHomFrom<J::Type>,
J::Type: IntegerRing + CanIsoFromTo<K::Type>,
<C::Type as ZnRing>::IntegerRingBase: IntegerRing + CanIsoFromTo<J::Type>,
K::Type: IntegerRing
{
type Homomorphism = (<J::Type as CanHomFrom<K::Type>>::Homomorphism, Vec<<C::Type as CanHomFrom<J::Type>>::Homomorphism>);
fn has_canonical_hom(&self, from: &zn_big::ZnBase<K>) -> Option<Self::Homomorphism> {
if self.total_ring.get_ring().has_canonical_hom(from).is_some() {
Some((
self.total_ring.get_ring().has_canonical_hom(from)?,
self.components.iter()
.map(|s| s.get_ring())
.map(|s| s.has_canonical_hom(self.integer_ring().get_ring()).ok_or(()))
.collect::<Result<Vec<_>, ()>>()
.ok()?
))
} else {
None
}
}
fn map_in(&self, from: &zn_big::ZnBase<K>, el: zn_big::ZnEl<K>, hom: &Self::Homomorphism) -> ZnEl<C, A> {
let lift = from.smallest_positive_lift(el);
let mapped_lift = <J::Type as CanHomFrom<K::Type>>::map_in(
self.integer_ring().get_ring(),
from.integer_ring().get_ring(),
lift,
&hom.0
);
self.from_congruence((0..self.len()).map(|i|
self.at(i).get_ring().map_in_ref(self.integer_ring().get_ring(), &mapped_lift, &hom.1[i])
))
}
}
impl<C: RingStore, J: RingStore, K: RingStore, A: Allocator + Clone> CanIsoFromTo<zn_big::ZnBase<K>> for ZnBase<C, J, A>
where C::Type: ZnRing + CanHomFrom<J::Type>,
J::Type: IntegerRing + CanIsoFromTo<K::Type>,
<C::Type as ZnRing>::IntegerRingBase: IntegerRing + CanIsoFromTo<J::Type>,
K::Type: IntegerRing
{
type Isomorphism = (
<zn_big::ZnBase<J> as CanIsoFromTo<zn_big::ZnBase<K>>>::Isomorphism,
<zn_big::ZnBase<J> as CanHomFrom<J::Type>>::Homomorphism
);
fn has_canonical_iso(&self, from: &zn_big::ZnBase<K>) -> Option<Self::Isomorphism> {
Some((
<zn_big::ZnBase<J> as CanIsoFromTo<zn_big::ZnBase<K>>>::has_canonical_iso(self.total_ring.get_ring(), from)?,
self.total_ring.get_ring().has_canonical_hom(self.total_ring.integer_ring().get_ring())?,
))
}
fn map_out(&self, from: &zn_big::ZnBase<K>, el: Self::Element, (final_iso, red): &Self::Isomorphism) -> zn_big::ZnEl<K> {
assert_eq!(self.len(), el.data.len());
let small_integer_ring = self.at(0).integer_ring();
let result = <_ as ComputeInnerProduct>::inner_product_ref_fst(self.total_ring.get_ring(),
self.components.iter()
.zip(el.data.into_iter())
.map(|(R, x): (&C, El<C>)| R.smallest_positive_lift(x))
.zip(self.unit_vectors.iter())
.map(|(x, u)|
(
u,
self.total_ring.get_ring().map_in(
self.total_ring.integer_ring().get_ring(),
int_cast(x, self.total_ring.integer_ring(), small_integer_ring),
red
)
)
)
);
return <zn_big::ZnBase<J> as CanIsoFromTo<zn_big::ZnBase<K>>>::map_out(self.total_ring.get_ring(), from, result, final_iso);
}
}
impl<C: RingStore, J: RingStore, A: Allocator + Clone> CanHomFrom<zn_64::ZnBase> for ZnBase<C, J, A>
where C::Type: ZnRing + CanHomFrom<J::Type>,
J::Type: IntegerRing + CanIsoFromTo<StaticRingBase<i64>>,
<C::Type as ZnRing>::IntegerRingBase: IntegerRing + CanIsoFromTo<J::Type>
{
type Homomorphism = (<Self as CanHomFrom<zn_big::ZnBase<J>>>::Homomorphism, <zn_big::ZnBase<J> as CanHomFrom<zn_64::ZnBase>>::Homomorphism);
fn has_canonical_hom(&self, from: &zn_64::ZnBase) -> Option<Self::Homomorphism> {
Some((self.has_canonical_hom(self.total_ring.get_ring())?, self.total_ring.get_ring().has_canonical_hom(from)?))
}
fn map_in(&self, from: &zn_64::ZnBase, el: zn_64::ZnEl, hom: &Self::Homomorphism) -> ZnEl<C, A> {
self.map_in(self.total_ring.get_ring(), self.total_ring.get_ring().map_in(from, el, &hom.1), &hom.0)
}
}
impl<C: RingStore, J: RingStore, K: IntegerRing, A: Allocator + Clone> CanHomFrom<K> for ZnBase<C, J, A>
where C::Type: ZnRing + CanHomFrom<J::Type> + CanHomFrom<K>,
J::Type: IntegerRing,
<C::Type as ZnRing>::IntegerRingBase: IntegerRing + CanIsoFromTo<J::Type>,
K: ?Sized
{
type Homomorphism = Vec<<C::Type as CanHomFrom<K>>::Homomorphism>;
fn has_canonical_hom(&self, from: &K) -> Option<Self::Homomorphism> {
Some(self.components.iter()
.map(|R| <C::Type as CanHomFrom<K>>::has_canonical_hom(R.get_ring(), from).ok_or(()))
.collect::<Result<Vec<<C::Type as CanHomFrom<K>>::Homomorphism>, ()>>()
.ok()?
)
}
fn map_in(&self, from: &K, el: K::Element, hom: &Self::Homomorphism) -> Self::Element {
self.from_congruence((0..self.len()).map(|i|
<C::Type as CanHomFrom<K>>::map_in_ref(self.at(i).get_ring(), from, &el, &hom[i])
))
}
}
impl<C: RingStore, J: RingStore, A: Allocator + Clone> DivisibilityRing for ZnBase<C, J, A>
where C::Type: ZnRing + CanHomFrom<J::Type>,
J::Type: IntegerRing,
<C::Type as ZnRing>::IntegerRingBase: IntegerRing + CanIsoFromTo<J::Type>
{
fn checked_left_div(&self, lhs: &Self::Element, rhs: &Self::Element) -> Option<Self::Element> {
let mut data = Vec::with_capacity_in(self.len(), self.element_allocator.clone());
for i in 0..self.len() {
data.push(self.at(i).checked_div(lhs.data.at(i), rhs.data.at(i))?);
}
return Some(ZnEl { data });
}
}
pub struct FromCongruenceElementCreator<'a, C: RingStore, J: RingStore, A: Allocator + Clone>
where C::Type: ZnRing + CanHomFrom<J::Type>,
J::Type: IntegerRing,
<C::Type as ZnRing>::IntegerRingBase: IntegerRing + CanIsoFromTo<J::Type>
{
ring: &'a ZnBase<C, J, A>
}
impl<'a, 'b, C: RingStore, J: RingStore, A: Allocator + Clone> Clone for FromCongruenceElementCreator<'a, C, J, A>
where C::Type: ZnRing + CanHomFrom<J::Type>,
J::Type: IntegerRing,
<C::Type as ZnRing>::IntegerRingBase: IntegerRing + CanIsoFromTo<J::Type>
{
fn clone(&self) -> Self {
*self
}
}
impl<'a, 'b, C: RingStore, J: RingStore, A: Allocator + Clone> Copy for FromCongruenceElementCreator<'a, C, J, A>
where C::Type: ZnRing + CanHomFrom<J::Type>,
J::Type: IntegerRing,
<C::Type as ZnRing>::IntegerRingBase: IntegerRing + CanIsoFromTo<J::Type>
{}
impl<'a, 'b, C: RingStore, J: RingStore, A: Allocator + Clone> FnOnce<(&'b [El<C>],)> for FromCongruenceElementCreator<'a, C, J, A>
where C::Type: ZnRing + CanHomFrom<J::Type>,
J::Type: IntegerRing,
<C::Type as ZnRing>::IntegerRingBase: IntegerRing + CanIsoFromTo<J::Type>
{
type Output = <ZnBase<C, J, A> as RingBase>::Element;
extern "rust-call" fn call_once(mut self, args: (&'b [El<C>],)) -> Self::Output {
self.call_mut(args)
}
}
impl<'a, 'b, C: RingStore, J: RingStore, A: Allocator + Clone> FnMut<(&'b [El<C>],)> for FromCongruenceElementCreator<'a, C, J, A>
where C::Type: ZnRing + CanHomFrom<J::Type>,
J::Type: IntegerRing,
<C::Type as ZnRing>::IntegerRingBase: IntegerRing + CanIsoFromTo<J::Type>
{
extern "rust-call" fn call_mut(&mut self, args: (&'b [El<C>],)) -> Self::Output {
self.ring.from_congruence(args.0.into_iter().enumerate().map(|(i, x)| self.ring.at(i).clone_el(x)))
}
}
pub struct CloneComponentElement<'a, C: RingStore, J: RingStore, A: Allocator + Clone>
where C::Type: ZnRing + CanHomFrom<J::Type>,
J::Type: IntegerRing,
<C::Type as ZnRing>::IntegerRingBase: IntegerRing + CanIsoFromTo<J::Type>
{
ring: &'a ZnBase<C, J, A>
}
impl<'a, 'b, C: RingStore, J: RingStore, A: Allocator + Clone> Clone for CloneComponentElement<'a, C, J, A>
where C::Type: ZnRing + CanHomFrom<J::Type>,
J::Type: IntegerRing,
<C::Type as ZnRing>::IntegerRingBase: IntegerRing + CanIsoFromTo<J::Type>
{
fn clone(&self) -> Self {
*self
}
}
impl<'a, 'b, C: RingStore, J: RingStore, A: Allocator + Clone> Copy for CloneComponentElement<'a, C, J, A>
where C::Type: ZnRing + CanHomFrom<J::Type>,
J::Type: IntegerRing,
<C::Type as ZnRing>::IntegerRingBase: IntegerRing + CanIsoFromTo<J::Type>
{}
impl<'a, 'b, C: RingStore, J: RingStore, A: Allocator + Clone> FnOnce<(usize, &'b El<C>)> for CloneComponentElement<'a, C, J, A>
where C::Type: ZnRing + CanHomFrom<J::Type>,
J::Type: IntegerRing,
<C::Type as ZnRing>::IntegerRingBase: IntegerRing + CanIsoFromTo<J::Type>
{
type Output = El<C>;
extern "rust-call" fn call_once(mut self, args: (usize, &'b El<C>)) -> Self::Output {
self.call_mut(args)
}
}
impl<'a, 'b, C: RingStore, J: RingStore, A: Allocator + Clone> FnMut<(usize, &'b El<C>)> for CloneComponentElement<'a, C, J, A>
where C::Type: ZnRing + CanHomFrom<J::Type>,
J::Type: IntegerRing,
<C::Type as ZnRing>::IntegerRingBase: IntegerRing + CanIsoFromTo<J::Type>
{
extern "rust-call" fn call_mut(&mut self, args: (usize, &'b El<C>)) -> Self::Output {
self.call(args)
}
}
impl<'a, 'b, C: RingStore, J: RingStore, A: Allocator + Clone> Fn<(usize, &'b El<C>)> for CloneComponentElement<'a, C, J, A>
where C::Type: ZnRing + CanHomFrom<J::Type>,
J::Type: IntegerRing,
<C::Type as ZnRing>::IntegerRingBase: IntegerRing + CanIsoFromTo<J::Type>
{
extern "rust-call" fn call(&self, args: (usize, &'b El<C>)) -> Self::Output {
self.ring.at(args.0).clone_el(args.1)
}
}
impl<C: RingStore, J: RingStore, A: Allocator + Clone> HashableElRing for ZnBase<C, J, A>
where C::Type: ZnRing + CanHomFrom<J::Type> + HashableElRing,
J::Type: IntegerRing,
<C::Type as ZnRing>::IntegerRingBase: IntegerRing + CanIsoFromTo<J::Type>
{
fn hash<H: std::hash::Hasher>(&self, el: &Self::Element, h: &mut H) {
for (i, el) in (0..self.components.len()).zip(el.data.iter()) {
self.components[i].hash(el, h);
}
}
}
impl<C: RingStore, J: RingStore, A: Allocator + Clone> FiniteRingSpecializable for ZnBase<C, J, A>
where C::Type: ZnRing + CanHomFrom<J::Type>,
J::Type: IntegerRing,
<C::Type as ZnRing>::IntegerRingBase: IntegerRing + CanIsoFromTo<J::Type>
{
fn specialize<O: FiniteRingOperation<Self>>(op: O) -> Result<O::Output, ()> {
Ok(op.execute())
}
}
impl<C: RingStore, J: RingStore, A: Allocator + Clone> FiniteRing for ZnBase<C, J, A>
where C::Type: ZnRing + CanHomFrom<J::Type>,
J::Type: IntegerRing,
<C::Type as ZnRing>::IntegerRingBase: IntegerRing + CanIsoFromTo<J::Type>
{
type ElementsIter<'a> = MultiProduct<<C::Type as FiniteRing>::ElementsIter<'a>, FromCongruenceElementCreator<'a, C, J, A>, CloneComponentElement<'a, C, J, A>, Self::Element>
where Self: 'a;
fn elements<'a>(&'a self) -> Self::ElementsIter<'a> {
multi_cartesian_product((0..self.len()).map(|i| self.at(i).elements()), FromCongruenceElementCreator { ring: self }, CloneComponentElement { ring: self })
}
fn random_element<G: FnMut() -> u64>(&self, mut rng: G) -> ZnEl<C, A> {
self.from_congruence((0..self.len()).map(|i| self.at(i).random_element(&mut rng)))
}
fn size<I: RingStore + Copy>(&self, ZZ: I) -> Option<El<I>>
where I::Type: IntegerRing
{
if ZZ.get_ring().representable_bits().is_none() || self.integer_ring().abs_log2_ceil(self.modulus()) < ZZ.get_ring().representable_bits() {
Some(int_cast(self.integer_ring().clone_el(self.modulus()), ZZ, self.integer_ring()))
} else {
None
}
}
}
impl<C: RingStore, J: RingStore, A: Allocator + Clone> PrincipalIdealRing for ZnBase<C, J, A>
where C::Type: ZnRing + CanHomFrom<J::Type>,
J::Type: IntegerRing,
<C::Type as ZnRing>::IntegerRingBase: IntegerRing + CanIsoFromTo<J::Type>
{
fn checked_div_min(&self, lhs: &Self::Element, rhs: &Self::Element) -> Option<Self::Element> {
let mut data = Vec::with_capacity_in(self.len(), self.element_allocator.clone());
for i in 0..self.len() {
data.push(self.at(i).checked_div_min(lhs.data.at(i), rhs.data.at(i))?);
}
return Some(ZnEl { data });
}
fn extended_ideal_gen(&self, lhs: &Self::Element, rhs: &Self::Element) -> (Self::Element, Self::Element, Self::Element) {
let mut result = (self.zero(), self.zero(), self.zero());
for (i, Zn) in self.as_iter().enumerate() {
(result.0.data[i], result.1.data[i], result.2.data[i]) = Zn.extended_ideal_gen(&lhs.data[i], &rhs.data[i]);
}
return result;
}
}
impl<C: RingStore, J: RingStore, A: Allocator + Clone> ZnRing for ZnBase<C, J, A>
where C::Type: ZnRing + CanHomFrom<J::Type>,
J::Type: IntegerRing,
<C::Type as ZnRing>::IntegerRingBase: IntegerRing + CanIsoFromTo<J::Type>
{
type IntegerRingBase = J::Type;
type IntegerRing = J;
fn integer_ring(&self) -> &Self::IntegerRing {
self.total_ring.integer_ring()
}
fn modulus(&self) -> &El<Self::IntegerRing> {
self.total_ring.modulus()
}
fn smallest_positive_lift(&self, el: Self::Element) -> El<Self::IntegerRing> {
self.total_ring.smallest_positive_lift(
<Self as CanIsoFromTo<zn_big::ZnBase<J>>>::map_out(
self,
self.total_ring.get_ring(),
el,
&<Self as CanIsoFromTo<zn_big::ZnBase<J>>>::has_canonical_iso(self, self.total_ring.get_ring()).unwrap()
)
)
}
fn smallest_lift(&self, el: Self::Element) -> El<Self::IntegerRing> {
self.total_ring.smallest_lift(
<Self as CanIsoFromTo<zn_big::ZnBase<J>>>::map_out(
self,
self.total_ring.get_ring(),
el,
&<Self as CanIsoFromTo<zn_big::ZnBase<J>>>::has_canonical_iso(self, self.total_ring.get_ring()).unwrap()
)
)
}
fn is_field(&self) -> bool {
self.components.len() == 1 && self.components[0].is_field()
}
fn from_int_promise_reduced(&self, x: El<Self::IntegerRing>) -> Self::Element {
debug_assert!(!self.integer_ring().is_neg(&x));
debug_assert!(self.integer_ring().is_lt(&x, self.modulus()));
RingRef::new(self).can_hom(self.integer_ring()).unwrap().map(x)
}
}
#[cfg(test)]
use crate::primitive_int::StaticRing;
#[cfg(test)]
const EDGE_CASE_ELEMENTS: [i32; 9] = [0, 1, 7, 9, 62, 8, 10, 11, 12];
#[test]
fn test_ring_axioms() {
let ring = Zn::create_from_primes(vec![7, 11], StaticRing::<i64>::RING);
crate::ring::generic_tests::test_ring_axioms(&ring, EDGE_CASE_ELEMENTS.iter().cloned().map(|x| ring.int_hom().map(x)))
}
#[test]
fn test_hash_axioms() {
let ring = Zn::create_from_primes(vec![7, 11], StaticRing::<i64>::RING);
crate::ring::generic_tests::test_hash_axioms(&ring, EDGE_CASE_ELEMENTS.iter().cloned().map(|x| ring.int_hom().map(x)))
}
#[test]
fn test_map_in_map_out() {
let ring1 = Zn::create_from_primes(vec![7, 11, 17], StaticRing::<i64>::RING);
let ring2 = zn_big::Zn::new(StaticRing::<i64>::RING, 7 * 11 * 17);
for x in [0, 1, 7, 8, 9, 10, 11, 17, 7 * 17, 11 * 8, 11 * 17, 7 * 11 * 17 - 1] {
let value = ring2.int_hom().map(x);
assert!(ring2.eq_el(&value, &ring1.can_iso(&ring2).unwrap().map(ring1.coerce(&ring2, value.clone()))));
}
}
#[test]
fn test_canonical_iso_axioms_zn_big() {
let from = zn_big::Zn::new(StaticRing::<i128>::RING, 7 * 11);
let to = Zn::create_from_primes(vec![7, 11], StaticRing::<i64>::RING);
crate::ring::generic_tests::test_hom_axioms(&from, &to, EDGE_CASE_ELEMENTS.iter().cloned().map(|x| from.int_hom().map(x)));
crate::ring::generic_tests::test_iso_axioms(&from, &to, EDGE_CASE_ELEMENTS.iter().cloned().map(|x| from.int_hom().map(x)));
let from = zn_big::Zn::new(StaticRing::<i128>::RING, 7 * 11 * 65537);
let to = Zn::create_from_primes(vec![7, 11, 65537], StaticRing::<i128>::RING);
crate::ring::generic_tests::test_hom_axioms(&from, &to, from.elements().step_by(65536));
crate::ring::generic_tests::test_iso_axioms(&from, &to, from.elements().step_by(65536));
}
#[test]
fn test_canonical_hom_axioms_static_int() {
let from = StaticRing::<i32>::RING;
let to = Zn::create_from_primes(vec![7, 11], StaticRing::<i64>::RING);
crate::ring::generic_tests::test_hom_axioms(&from, to, EDGE_CASE_ELEMENTS.iter().cloned().map(|x| from.int_hom().map(x)));
}
#[test]
fn test_zn_ring_axioms() {
let ring = Zn::create_from_primes(vec![7, 11], StaticRing::<i64>::RING);
super::generic_tests::test_zn_axioms(ring);
}
#[test]
fn test_zn_map_in_large_int() {
let ring = Zn::create_from_primes(vec![7, 11], BigIntRing::RING);
super::generic_tests::test_map_in_large_int(ring);
let R = Zn::create_from_primes(vec![3, 5, 7], BigIntRing::RING);
let S = BigIntRing::RING;
assert!(R.eq_el(&R.int_hom().map(120493), &R.coerce(&S, S.int_hom().map(120493))));
}
#[test]
fn test_principal_ideal_ring_axioms() {
let R = Zn::create_from_primes(vec![5], BigIntRing::RING);
crate::pid::generic_tests::test_principal_ideal_ring_axioms(&R, R.elements());
let R = Zn::create_from_primes(vec![3, 5], BigIntRing::RING);
crate::pid::generic_tests::test_principal_ideal_ring_axioms(&R, R.elements());
let R = Zn::create_from_primes(vec![2, 3, 5], BigIntRing::RING);
crate::pid::generic_tests::test_principal_ideal_ring_axioms(&R, R.elements());
let R = Zn::create_from_primes(vec![3, 5, 2], BigIntRing::RING);
let modulo = R.int_hom();
crate::pid::generic_tests::test_principal_ideal_ring_axioms(
&R,
[-1, 0, 1, 3, 2, 4, 5, 9, 18, 15, 30].into_iter().map(|x| modulo.map(x))
);
}
#[test]
fn test_finite_ring_axioms() {
crate::rings::finite::generic_tests::test_finite_ring_axioms(&Zn::create_from_primes(vec![3, 5, 7, 11], StaticRing::<i64>::RING));
crate::rings::finite::generic_tests::test_finite_ring_axioms(&Zn::create_from_primes(vec![3, 5], StaticRing::<i64>::RING));
crate::rings::finite::generic_tests::test_finite_ring_axioms(&Zn::create_from_primes(vec![3], StaticRing::<i64>::RING));
crate::rings::finite::generic_tests::test_finite_ring_axioms(&Zn::create_from_primes(vec![2], StaticRing::<i64>::RING));
}
#[test]
fn test_not_prime() {
let ring = Zn::new(vec![zn_64::Zn::new(15), zn_64::Zn::new(7)], StaticRing::<i64>::RING);
let equivalent_ring = zn_big::Zn::new(StaticRing::<i64>::RING, 15 * 7);
crate::ring::generic_tests::test_ring_axioms(&ring, ring.elements());
crate::divisibility::generic_tests::test_divisibility_axioms(&ring, ring.elements());
crate::homomorphism::generic_tests::test_homomorphism_axioms(ring.can_hom(&equivalent_ring).unwrap(), equivalent_ring.elements());
crate::homomorphism::generic_tests::test_homomorphism_axioms(ring.can_iso(&equivalent_ring).unwrap(), ring.elements());
}
#[test]
#[should_panic]
fn test_not_coprime() {
_ = Zn::new(vec![zn_64::Zn::new(15), zn_64::Zn::new(35)], StaticRing::<i64>::RING);
}
#[test]
fn test_format() {
let ring = Zn::new([72057594035352641, 72057594035418113, 72057594036334721, 72057594036945793, ].iter().map(|p| zn_64::Zn::new(*p)).collect(), BigIntRing::RING);
assert_eq!("1", format!("{}", ring.format(&ring.int_hom().map(1))));
}