use crate::algorithms::convolution::KaratsubaHint;
use crate::algorithms::int_factor::is_prime_power;
use crate::algorithms::matmul::*;
use crate::compute_locally::InterpolationBaseRing;
use crate::delegate::*;
use crate::divisibility::{DivisibilityRing, DivisibilityRingStore, Domain};
use crate::field::Field;
use crate::local::{PrincipalLocalRing, PrincipalLocalRingStore};
use crate::pid::*;
use crate::integer::IntegerRing;
use crate::ring::*;
use crate::homomorphism::*;
use super::field::{AsField, AsFieldBase};
use crate::rings::zn::*;
#[stability::unstable(feature = "enable")]
pub struct AsLocalPIRBase<R: DivisibilityRingStore>
where R::Type: DivisibilityRing
{
base: R,
max_ideal_gen: LocalPIREl<R>,
nilpotent_power: Option<usize>
}
impl<R> Clone for AsLocalPIRBase<R>
where R: DivisibilityRingStore + Clone,
R::Type: DivisibilityRing
{
fn clone(&self) -> Self {
Self {
base: self.base.clone(),
max_ideal_gen: self.clone_el(&self.max_ideal_gen),
nilpotent_power: self.nilpotent_power
}
}
}
impl<R> Copy for AsLocalPIRBase<R>
where R: DivisibilityRingStore + Copy,
R::Type: DivisibilityRing,
El<R>: Copy
{}
impl<R> PartialEq for AsLocalPIRBase<R>
where R: DivisibilityRingStore,
R::Type: DivisibilityRing
{
fn eq(&self, other: &Self) -> bool {
self.base.get_ring() == other.base.get_ring()
}
}
#[stability::unstable(feature = "enable")]
pub type AsLocalPIR<R> = RingValue<AsLocalPIRBase<R>>;
#[stability::unstable(feature = "enable")]
pub struct LocalPIREl<R: DivisibilityRingStore>(El<R>)
where R::Type: DivisibilityRing;
impl<R: DivisibilityRingStore> Clone for LocalPIREl<R>
where El<R>: Clone,
R::Type: DivisibilityRing
{
fn clone(&self) -> Self {
LocalPIREl(self.0.clone())
}
}
impl<R: DivisibilityRingStore> Copy for LocalPIREl<R>
where El<R>: Copy,
R::Type: DivisibilityRing
{}
impl<R> AsLocalPIR<R>
where R: RingStore,
R::Type: ZnRing
{
#[stability::unstable(feature = "enable")]
pub fn from_zn(ring: R) -> Option<Self> {
let (p, e) = is_prime_power(ring.integer_ring(), ring.modulus())?;
let gen = ring.can_hom(ring.integer_ring()).unwrap().map(p);
Some(Self::from(AsLocalPIRBase::promise_is_local_pir(ring, gen, Some(e))))
}
}
impl<R> AsLocalPIR<R>
where R: RingStore,
R::Type: Field
{
#[stability::unstable(feature = "enable")]
pub fn from_field(ring: R) -> Self {
let zero = ring.zero();
Self::from(AsLocalPIRBase::promise_is_local_pir(ring, zero, Some(1)))
}
}
impl<R> AsLocalPIR<R>
where R: RingStore,
R::Type: PrincipalLocalRing
{
#[stability::unstable(feature = "enable")]
pub fn from_localpir(ring: R) -> Self {
let max_ideal_gen = ring.clone_el(ring.max_ideal_gen());
let nilpotent_power = ring.nilpotent_power();
Self::from(AsLocalPIRBase::promise_is_local_pir(ring, max_ideal_gen, nilpotent_power))
}
}
impl<R> AsLocalPIR<R>
where R: RingStore,
R::Type: DivisibilityRing
{
#[stability::unstable(feature = "enable")]
pub fn from_as_field(ring: AsField<R>) -> Self {
let ring = ring.into().unwrap_self();
let zero = ring.zero();
Self::from(AsLocalPIRBase::promise_is_local_pir(ring, zero, Some(1)))
}
}
impl<R: DivisibilityRingStore> AsLocalPIRBase<R>
where R::Type: DivisibilityRing
{
#[stability::unstable(feature = "enable")]
pub fn promise_is_local_pir(base: R, max_ideal_gen: El<R>, nilpotent_power: Option<usize>) -> Self {
assert!(base.is_commutative());
let max_ideal_gen = LocalPIREl(max_ideal_gen);
Self { base, max_ideal_gen, nilpotent_power }
}
#[stability::unstable(feature = "enable")]
pub fn unwrap_element(&self, el: <Self as RingBase>::Element) -> El<R> {
el.0
}
#[stability::unstable(feature = "enable")]
pub fn unwrap_self(self) -> R {
self.base
}
}
impl<R: DivisibilityRingStore> DelegateRing for AsLocalPIRBase<R>
where R::Type: DivisibilityRing
{
type Element = LocalPIREl<R>;
type Base = R::Type;
fn get_delegate(&self) -> &Self::Base {
self.base.get_ring()
}
fn delegate(&self, el: Self::Element) -> <Self::Base as RingBase>::Element {
el.0
}
fn delegate_mut<'a>(&self, el: &'a mut Self::Element) -> &'a mut <Self::Base as RingBase>::Element {
&mut el.0
}
fn delegate_ref<'a>(&self, el: &'a Self::Element) -> &'a <Self::Base as RingBase>::Element {
&el.0
}
fn rev_delegate(&self, el: <Self::Base as RingBase>::Element) -> Self::Element {
LocalPIREl(el)
}
}
impl<R: DivisibilityRingStore> DelegateRingImplFiniteRing for AsLocalPIRBase<R>
where R::Type: DivisibilityRing
{}
impl<R: DivisibilityRingStore, S: DivisibilityRingStore> CanHomFrom<AsLocalPIRBase<S>> for AsLocalPIRBase<R>
where R::Type: DivisibilityRing + CanHomFrom<S::Type>,
S::Type: DivisibilityRing
{
type Homomorphism = <R::Type as CanHomFrom<S::Type>>::Homomorphism;
fn has_canonical_hom(&self, from: &AsLocalPIRBase<S>) -> Option<Self::Homomorphism> {
<R::Type as CanHomFrom<S::Type>>::has_canonical_hom(self.get_delegate(), from.get_delegate())
}
fn map_in(&self, from: &AsLocalPIRBase<S>, el: LocalPIREl<S>, hom: &Self::Homomorphism) -> Self::Element {
LocalPIREl(<R::Type as CanHomFrom<S::Type>>::map_in(self.get_delegate(), from.get_delegate(), el.0, hom))
}
}
impl<R: DivisibilityRingStore, S: DivisibilityRingStore> CanIsoFromTo<AsLocalPIRBase<S>> for AsLocalPIRBase<R>
where R::Type: DivisibilityRing + CanIsoFromTo<S::Type>,
S::Type: DivisibilityRing
{
type Isomorphism = <R::Type as CanIsoFromTo<S::Type>>::Isomorphism;
fn has_canonical_iso(&self, from: &AsLocalPIRBase<S>) -> Option<Self::Isomorphism> {
<R::Type as CanIsoFromTo<S::Type>>::has_canonical_iso(self.get_delegate(), from.get_delegate())
}
fn map_out(&self, from: &AsLocalPIRBase<S>, el: Self::Element, iso: &Self::Isomorphism) -> LocalPIREl<S> {
LocalPIREl(<R::Type as CanIsoFromTo<S::Type>>::map_out(self.get_delegate(), from.get_delegate(), el.0, iso))
}
}
impl<R: DivisibilityRingStore, S: IntegerRing + ?Sized> CanHomFrom<S> for AsLocalPIRBase<R>
where R::Type: DivisibilityRing + CanHomFrom<S>
{
type Homomorphism = <R::Type as CanHomFrom<S>>::Homomorphism;
fn has_canonical_hom(&self, from: &S) -> Option<Self::Homomorphism> {
self.get_delegate().has_canonical_hom(from)
}
fn map_in(&self, from: &S, el: S::Element, hom: &Self::Homomorphism) -> Self::Element {
LocalPIREl(<R::Type as CanHomFrom<S>>::map_in(self.get_delegate(), from, el, hom))
}
}
impl<R: DivisibilityRingStore> DivisibilityRing for AsLocalPIRBase<R>
where R::Type: DivisibilityRing
{
fn checked_left_div(&self, lhs: &Self::Element, rhs: &Self::Element) -> Option<Self::Element> {
self.get_delegate().checked_left_div(&lhs.0, &rhs.0).map(LocalPIREl)
}
}
impl<R: DivisibilityRingStore> PrincipalIdealRing for AsLocalPIRBase<R>
where R::Type: DivisibilityRing
{
fn checked_div_min(&self, lhs: &Self::Element, rhs: &Self::Element) -> Option<Self::Element> {
if let Some(e) = self.nilpotent_power {
if self.is_zero(lhs) && self.is_zero(rhs) {
return Some(self.one());
} else if self.is_zero(lhs) {
return Some(RingRef::new(self).pow(self.clone_el(self.max_ideal_gen()), e - self.valuation(rhs).unwrap()));
} else {
return self.checked_left_div(lhs, rhs);
}
} else {
self.checked_left_div(lhs, rhs)
}
}
fn extended_ideal_gen(&self, lhs: &Self::Element, rhs: &Self::Element) -> (Self::Element, Self::Element, Self::Element) {
if self.checked_left_div(lhs, rhs).is_some() {
(self.zero(), self.one(), self.clone_el(rhs))
} else {
(self.one(), self.zero(), self.clone_el(lhs))
}
}
fn create_elimination_matrix(&self, a: &Self::Element, b: &Self::Element) -> ([Self::Element; 4], Self::Element) {
if let Some(quo) = self.checked_left_div(b, a) {
(
[self.one(), self.zero(), self.negate(quo), self.one()],
self.clone_el(a)
)
} else {
let quo = self.checked_left_div(a, b).unwrap();
(
[self.zero(), self.one(), self.one(), self.negate(quo)],
self.clone_el(b)
)
}
}
}
impl<R: DivisibilityRingStore> KaratsubaHint for AsLocalPIRBase<R>
where R::Type: DivisibilityRing
{
fn karatsuba_threshold(&self) -> usize {
self.get_delegate().karatsuba_threshold()
}
}
impl<R: DivisibilityRingStore> StrassenHint for AsLocalPIRBase<R>
where R::Type: DivisibilityRing
{
fn strassen_threshold(&self) -> usize {
self.get_delegate().strassen_threshold()
}
}
impl<R: DivisibilityRingStore> ComputeInnerProduct for AsLocalPIRBase<R>
where R::Type: DivisibilityRing
{
fn inner_product<I: Iterator<Item = (Self::Element, Self::Element)>>(&self, els: I) -> Self::Element {
self.rev_delegate(self.get_delegate().inner_product(els.map(|(a, b)| (self.delegate(a), self.delegate(b)))))
}
fn inner_product_ref<'a, I: Iterator<Item = (&'a Self::Element, &'a Self::Element)>>(&self, els: I) -> Self::Element
where Self::Element: 'a,
Self: 'a
{
self.rev_delegate(self.get_delegate().inner_product_ref(els.map(|(a, b)| (self.delegate_ref(a), self.delegate_ref(b)))))
}
fn inner_product_ref_fst<'a, I: Iterator<Item = (&'a Self::Element, Self::Element)>>(&self, els: I) -> Self::Element
where Self::Element: 'a,
Self: 'a
{
self.rev_delegate(self.get_delegate().inner_product_ref_fst(els.map(|(a, b)| (self.delegate_ref(a), self.delegate(b)))))
}
}
impl<R: DivisibilityRingStore> EuclideanRing for AsLocalPIRBase<R>
where R::Type: DivisibilityRing
{
fn euclidean_div_rem(&self, lhs: Self::Element, rhs: &Self::Element) -> (Self::Element, Self::Element) {
if let Some(quo) = self.checked_left_div(&lhs, rhs) {
(quo, self.zero())
} else {
(self.zero(), lhs)
}
}
fn euclidean_deg(&self, val: &Self::Element) -> Option<usize> {
self.valuation(val)
}
}
impl<R: DivisibilityRingStore> PrincipalLocalRing for AsLocalPIRBase<R>
where R::Type: DivisibilityRing
{
fn max_ideal_gen(&self) -> &Self::Element {
&self.max_ideal_gen
}
fn nilpotent_power(&self) -> Option<usize> {
self.nilpotent_power
}
}
impl<R: DivisibilityRingStore> Domain for AsLocalPIRBase<R>
where R::Type: DivisibilityRing + Domain
{}
impl<R> FromModulusCreateableZnRing for AsLocalPIRBase<RingValue<R>>
where R: DivisibilityRing + ZnRing + FromModulusCreateableZnRing
{
fn create<F, E>(create_modulus: F) -> Result<Self, E>
where F:FnOnce(&Self::IntegerRingBase) -> Result<El<Self::IntegerRing>, E>
{
<R as FromModulusCreateableZnRing>::create(create_modulus).map(|ring| AsLocalPIR::from_zn(RingValue::from(ring)).unwrap().into())
}
}
impl<R: DivisibilityRingStore> Field for AsLocalPIRBase<R>
where R::Type: DivisibilityRing + Field
{}
impl<R> InterpolationBaseRing for AsLocalPIRBase<R>
where R: RingStore,
R::Type: InterpolationBaseRing
{
type ExtendedRingBase<'a> = <R::Type as InterpolationBaseRing>::ExtendedRingBase<'a>
where Self: 'a;
type ExtendedRing<'a> = <R::Type as InterpolationBaseRing>::ExtendedRing<'a>
where Self: 'a;
fn in_base<'a, S>(&self, ext_ring: S, el: El<S>) -> Option<Self::Element>
where Self: 'a, S: RingStore<Type = Self::ExtendedRingBase<'a>>
{
self.get_delegate().in_base(ext_ring, el).map(|x| self.rev_delegate(x))
}
fn in_extension<'a, S>(&self, ext_ring: S, el: Self::Element) -> El<S>
where Self: 'a, S: RingStore<Type = Self::ExtendedRingBase<'a>>
{
self.get_delegate().in_extension(ext_ring, self.delegate(el))
}
fn interpolation_points<'a>(&'a self, count: usize) -> (Self::ExtendedRing<'a>, Vec<El<Self::ExtendedRing<'a>>>) {
self.get_delegate().interpolation_points(count)
}
}
impl<R1, R2> CanHomFrom<AsFieldBase<R1>> for AsLocalPIRBase<R2>
where R1: RingStore, R2: RingStore,
R2::Type: CanHomFrom<R1::Type>,
R1::Type: DivisibilityRing,
R2::Type: DivisibilityRing
{
type Homomorphism = <R2::Type as CanHomFrom<R1::Type>>::Homomorphism;
fn has_canonical_hom(&self, from: &AsFieldBase<R1>) -> Option<Self::Homomorphism> {
self.get_delegate().has_canonical_hom(from.get_delegate())
}
fn map_in(&self, from: &AsFieldBase<R1>, el: <AsFieldBase<R1> as RingBase>::Element, hom: &Self::Homomorphism) -> Self::Element {
self.rev_delegate(self.get_delegate().map_in(from.get_delegate(), from.delegate(el), hom))
}
}
impl<R1, R2> CanIsoFromTo<AsFieldBase<R1>> for AsLocalPIRBase<R2>
where R1: RingStore, R2: RingStore,
R2::Type: CanIsoFromTo<R1::Type>,
R1::Type: DivisibilityRing,
R2::Type: DivisibilityRing
{
type Isomorphism = <R2::Type as CanIsoFromTo<R1::Type>>::Isomorphism;
fn has_canonical_iso(&self, from: &AsFieldBase<R1>) -> Option<Self::Isomorphism> {
self.get_delegate().has_canonical_iso(from.get_delegate())
}
fn map_out(&self, from: &AsFieldBase<R1>, el: Self::Element, iso: &Self::Isomorphism) -> <AsFieldBase<R1> as RingBase>::Element {
from.rev_delegate(self.get_delegate().map_out(from.get_delegate(), self.delegate(el), iso))
}
}
#[macro_export]
macro_rules! impl_localpir_wrap_unwrap_homs {
(<{$($gen_args:tt)*}> $self_type_from:ty, $self_type_to:ty where $($constraints:tt)*) => {
impl<AsLocalPIRStore, $($gen_args)*> CanHomFrom<$self_type_from> for $crate::rings::local::AsLocalPIRBase<AsLocalPIRStore>
where AsLocalPIRStore: RingStore<Type = $self_type_to>, $($constraints)*
{
type Homomorphism = <$self_type_to as CanHomFrom<$self_type_from>>::Homomorphism;
fn has_canonical_hom(&self, from: &$self_type_from) -> Option<Self::Homomorphism> {
self.get_delegate().has_canonical_hom(from)
}
fn map_in(&self, from: &$self_type_from, el: <$self_type_from as $crate::ring::RingBase>::Element, hom: &Self::Homomorphism) -> <Self as $crate::ring::RingBase>::Element {
self.rev_delegate(self.get_delegate().map_in(from, el, hom))
}
}
impl<AsLocalPIRStore, $($gen_args)*> CanHomFrom<$crate::rings::local::AsLocalPIRBase<AsLocalPIRStore>> for $self_type_to
where AsLocalPIRStore: RingStore<Type = $self_type_from>, $($constraints)*
{
type Homomorphism = <$self_type_to as CanHomFrom<$self_type_from>>::Homomorphism;
fn has_canonical_hom(&self, from: &$crate::rings::local::AsLocalPIRBase<AsLocalPIRStore>) -> Option<Self::Homomorphism> {
self.has_canonical_hom(from.get_delegate())
}
fn map_in(&self, from: &$crate::rings::local::AsLocalPIRBase<AsLocalPIRStore>, el: $crate::rings::local::LocalPIREl<AsLocalPIRStore>, hom: &Self::Homomorphism) -> <Self as $crate::ring::RingBase>::Element {
self.map_in(from.get_delegate(), from.delegate(el), hom)
}
}
};
($self_type_from:ty, $self_type_to:ty) => {
impl_localpir_wrap_unwrap_homs!{ <{}> $self_type_from, $self_type_to where }
};
}
#[macro_export]
macro_rules! impl_localpir_wrap_unwrap_isos {
(<{$($gen_args:tt)*}> $self_type_from:ty, $self_type_to:ty where $($constraints:tt)*) => {
impl<AsLocalPIRStore, $($gen_args)*> CanIsoFromTo<$self_type_from> for $crate::rings::local::AsLocalPIRBase<AsLocalPIRStore>
where AsLocalPIRStore: RingStore<Type = $self_type_to>, $($constraints)*
{
type Isomorphism = <$self_type_to as CanIsoFromTo<$self_type_from>>::Isomorphism;
fn has_canonical_iso(&self, from: &$self_type_from) -> Option<Self::Isomorphism> {
self.get_delegate().has_canonical_iso(from)
}
fn map_out(&self, from: &$self_type_from, el: <Self as RingBase>::Element, iso: &Self::Isomorphism) -> <$self_type_from as RingBase>::Element {
self.get_delegate().map_out(from, self.delegate(el), iso)
}
}
impl<AsLocalPIRStore, $($gen_args)*> CanIsoFromTo<$crate::rings::local::AsLocalPIRBase<AsLocalPIRStore>> for $self_type_to
where AsLocalPIRStore: RingStore<Type = $self_type_from>, $($constraints)*
{
type Isomorphism = <$self_type_to as CanIsoFromTo<$self_type_from>>::Isomorphism;
fn has_canonical_iso(&self, from: &$crate::rings::local::AsLocalPIRBase<AsLocalPIRStore>) -> Option<Self::Isomorphism> {
self.has_canonical_iso(from.get_delegate())
}
fn map_out(&self, from: &$crate::rings::local::AsLocalPIRBase<AsLocalPIRStore>, el: <Self as RingBase>::Element, hom: &Self::Isomorphism) -> $crate::rings::local::LocalPIREl<AsLocalPIRStore> {
from.rev_delegate(self.map_out(from.get_delegate(), el, hom))
}
}
};
($self_type_from:ty, $self_type_to:ty) => {
impl_localpir_wrap_unwrap_isos!{ <{}> $self_type_from, $self_type_to where }
};
}
#[cfg(test)]
use crate::rings::zn::zn_big::Zn;
#[cfg(test)]
use crate::primitive_int::*;
#[cfg(test)]
use crate::rings::finite::FiniteRingStore;
#[cfg(test)]
use std::alloc::Global;
#[cfg(test)]
use std::time::Instant;
#[cfg(test)]
use crate::algorithms::linsolve::LinSolveRing;
#[cfg(test)]
use crate::matrix::{OwnedMatrix, TransposableSubmatrix, TransposableSubmatrixMut};
#[cfg(test)]
use crate::assert_matrix_eq;
#[cfg(test)]
use super::extension::galois_field::GaloisField;
#[test]
fn test_canonical_hom_axioms_static_int() {
let R = AsLocalPIR::from_zn(Zn::new(StaticRing::<i64>::RING, 8)).unwrap();
crate::ring::generic_tests::test_hom_axioms(StaticRing::<i64>::RING, &R, 0..8);
}
#[test]
fn test_divisibility_axioms() {
let R = AsLocalPIR::from_zn(Zn::new(StaticRing::<i64>::RING, 8)).unwrap();
crate::divisibility::generic_tests::test_divisibility_axioms(&R, R.elements());
}
#[test]
fn test_principal_ideal_ring_axioms() {
let R = AsLocalPIR::from_zn(Zn::new(StaticRing::<i64>::RING, 8)).unwrap();
crate::pid::generic_tests::test_principal_ideal_ring_axioms(&R, R.elements());
let R = AsLocalPIR::from_zn(Zn::new(StaticRing::<i64>::RING, 9)).unwrap();
crate::pid::generic_tests::test_principal_ideal_ring_axioms(&R, R.elements());
let R = AsLocalPIR::from_zn(Zn::new(StaticRing::<i64>::RING, 17)).unwrap();
crate::pid::generic_tests::test_principal_ideal_ring_axioms(&R, R.elements());
}
#[test]
fn test_canonical_hom_axioms_wrap_unwrap() {
let R = AsLocalPIR::from_zn(Zn::new(StaticRing::<i64>::RING, 8)).unwrap();
crate::ring::generic_tests::test_hom_axioms(RingRef::new(R.get_ring().get_delegate()), &R, RingRef::new(R.get_ring().get_delegate()).elements());
crate::ring::generic_tests::test_iso_axioms(RingRef::new(R.get_ring().get_delegate()), &R, RingRef::new(R.get_ring().get_delegate()).elements());
}
#[test]
fn test_checked_div_min() {
let ring = AsLocalPIR::from_zn(Zn::new(StaticRing::<i64>::RING, 27)).unwrap();
assert_el_eq!(&ring, ring.zero(), ring.checked_div_min(&ring.zero(), &ring.one()).unwrap());
assert_el_eq!(&ring, ring.int_hom().map(9), ring.checked_div_min(&ring.zero(), &ring.int_hom().map(3)).unwrap());
assert_el_eq!(&ring, ring.int_hom().map(3), ring.checked_div_min(&ring.zero(), &ring.int_hom().map(9)).unwrap());
assert_el_eq!(&ring, ring.one(), ring.checked_div_min(&ring.zero(), &ring.zero()).unwrap());
}
#[test]
#[ignore]
fn test_solve_large_galois_ring() {
let ring: AsLocalPIR<_> = GaloisField::new(17, 2048).get_ring().galois_ring(5);
let mut matrix: OwnedMatrix<_> = OwnedMatrix::zero(2, 2, &ring);
let mut rng = oorandom::Rand64::new(1);
*matrix.at_mut(0, 0) = ring.random_element(|| rng.rand_u64());
*matrix.at_mut(0, 1) = ring.random_element(|| rng.rand_u64());
*matrix.at_mut(1, 1) = ring.random_element(|| rng.rand_u64());
assert!(ring.is_unit(&ring.sub_ref(matrix.at(0, 1), matrix.at(1, 1))), "matrix generation failed, pick another seed");
*matrix.at_mut(1, 0) = ring.clone_el(matrix.at(0, 0));
let mut rhs: OwnedMatrix<_> = OwnedMatrix::zero(2, 1, &ring);
*rhs.at_mut(0, 0) = ring.random_element(|| rng.rand_u64());
*rhs.at_mut(0, 1) = ring.random_element(|| rng.rand_u64());
let rhs = rhs;
let matrix = matrix;
let mut result: OwnedMatrix<_> = OwnedMatrix::zero(2, 1, &ring);
let start = Instant::now();
ring.get_ring().solve_right(matrix.clone_matrix(&ring).data_mut(), rhs.clone_matrix(&ring).data_mut(), result.data_mut(), Global).assert_solved();
let end = Instant::now();
println!("Solved over GR(17, 5, 2048) in {} ms", (end - start).as_millis());
let mut product: OwnedMatrix<_> = OwnedMatrix::zero(2, 1, &ring);
STANDARD_MATMUL.matmul(TransposableSubmatrix::from(matrix.data()), TransposableSubmatrix::from(result.data()), TransposableSubmatrixMut::from(product.data_mut()), &ring);
assert_matrix_eq!(ring, rhs, product);
}