feanor_math/integer.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
use crate::algorithms;
use crate::algorithms::poly_gcd::local::IntegerPolyGCDRing;
use crate::divisibility::*;
use crate::ring::*;
use crate::homomorphism::*;
use crate::pid::*;
use crate::ordered::*;
///
/// Type alias for the current default used big integer ring implementation.
///
/// The type this points to may change when features or other compilation parameters
/// change.
///
#[cfg(feature = "mpir")]
pub type BigIntRing = crate::rings::mpir::MPZ;
///
/// Type alias for the current default used big integer ring implementation.
///
/// The type this points to may change when features or other compilation parameters
/// change.
///
#[cfg(not(feature = "mpir"))]
pub type BigIntRing = crate::rings::rust_bigint::RustBigintRing;
///
/// Type alias for the current default used big integer ring implementation.
///
/// The type this points to may change when features or other compilation parameters
/// change.
///
#[cfg(feature = "mpir")]
pub type BigIntRingBase = crate::rings::mpir::MPZBase;
///
/// Type alias for the current default used big integer ring implementation.
///
/// The type this points to may change when features or other compilation parameters
/// change.
///
#[cfg(not(feature = "mpir"))]
pub type BigIntRingBase = crate::rings::rust_bigint::RustBigintRingBase;
///
/// Trait for rings that are isomorphic to the ring of integers `ZZ = { ..., -2, -1, 0, 1, 2, ... }`.
///
/// Some of the functionality in this trait refers to the binary expansion of
/// a positive integer. While this is not really general, it is often required
/// for fast operations with integers.
///
/// As an additional requirement, the euclidean division (i.e. [`EuclideanRing::euclidean_div_rem()`] and
/// [`IntegerRing::euclidean_div_pow_2()`]) are additionally expected to round towards zero.
///
/// Currently [`IntegerRing`] is a subtrait of the unstable trait [`IntegerPolyGCDRing`],
/// so it is at the moment impossible to implement [`IntegerRing`] for a custom ring type
/// without enabling unstable features. Sorry.
///
pub trait IntegerRing: Domain + EuclideanRing + OrderedRing + HashableElRing + IntegerPolyGCDRing {
///
/// Computes a float value that is "close" to the given integer.
///
/// However, no guarantees are made on how close it must be, in particular,
/// this function may also always return `0.` (this is just an example -
/// it's not a good idea).
///
/// Some use cases include:
/// - Estimating control parameters (e.g. bounds for prime numbers
/// during factoring algorithms)
/// - First performing some operation on floating point numbers, and
/// then refining it to integers.
///
/// Note that a high-quality implementation of this function can vastly improve
/// performance in some cases, e.g. of [`crate::algorithms::int_bisect::root_floor()`] or
/// [`crate::algorithms::lll::lll_exact()`].
///
/// # Example
///
/// ```
/// # use feanor_math::ring::*;
/// # use feanor_math::integer::*;
/// let ZZ = BigIntRing::RING;
/// let x = ZZ.power_of_two(1023);
/// assert!(ZZ.to_float_approx(&x) > 2f64.powi(1023) * 0.99999);
/// assert!(ZZ.to_float_approx(&x) < 2f64.powi(1023) * 1.000001);
/// ```
/// If the value is too large for the exponent of a `f64`, infinity is returned.
/// ```
/// # use feanor_math::ring::*;
/// # use feanor_math::integer::*;
/// let ZZ = BigIntRing::RING;
/// let x = ZZ.power_of_two(1024);
/// assert!(ZZ.to_float_approx(&x).is_infinite());
/// ```
///
fn to_float_approx(&self, value: &Self::Element) -> f64;
///
/// Computes a value that is "close" to the given float. However, no guarantees
/// are made on the definition of close, in particular, this does not have to be
/// the closest integer to the given float, and cannot be used to compute rounding.
/// It is also implementation-defined when to return `None`, although this is usually
/// the case on infinity and NaN.
///
/// For information when to use (or not use) this, see its counterpart [`IntegerRing::to_float_approx()`].
///
fn from_float_approx(&self, value: f64) -> Option<Self::Element>;
///
/// Return whether the `i`-th bit in the two-complements representation of `abs(value)`
/// is `1`.
///
/// # Example
/// ```
/// # use feanor_math::primitive_int::*;
/// # use feanor_math::integer::*;
/// # use feanor_math::ring::*;
/// assert_eq!(false, StaticRing::<i32>::RING.abs_is_bit_set(&4, 1));
/// assert_eq!(true, StaticRing::<i32>::RING.abs_is_bit_set(&4, 2));
/// assert_eq!(true, StaticRing::<i32>::RING.abs_is_bit_set(&-4, 2));
/// ```
///
fn abs_is_bit_set(&self, value: &Self::Element, i: usize) -> bool;
///
/// Returns the index of the highest set bit in the two-complements representation of `abs(value)`,
/// or `None` if the value is zero.
///
/// # Example
/// ```
/// # use feanor_math::primitive_int::*;
/// # use feanor_math::integer::*;
/// # use feanor_math::ring::*;
/// assert_eq!(None, StaticRing::<i32>::RING.abs_highest_set_bit(&0));
/// assert_eq!(Some(0), StaticRing::<i32>::RING.abs_highest_set_bit(&-1));
/// assert_eq!(Some(2), StaticRing::<i32>::RING.abs_highest_set_bit(&4));
/// ```
///
fn abs_highest_set_bit(&self, value: &Self::Element) -> Option<usize>;
///
/// Returns the index of the lowest set bit in the two-complements representation of `abs(value)`,
/// or `None` if the value is zero.
///
/// # Example
/// ```
/// # use feanor_math::primitive_int::*;
/// # use feanor_math::integer::*;
/// # use feanor_math::ring::*;
/// assert_eq!(None, StaticRing::<i32>::RING.abs_lowest_set_bit(&0));
/// assert_eq!(Some(0), StaticRing::<i32>::RING.abs_lowest_set_bit(&1));
/// assert_eq!(Some(0), StaticRing::<i32>::RING.abs_lowest_set_bit(&-3));
/// assert_eq!(Some(2), StaticRing::<i32>::RING.abs_lowest_set_bit(&4));
/// ```
///
fn abs_lowest_set_bit(&self, value: &Self::Element) -> Option<usize>;
///
/// Computes the euclidean division by a power of two, always rounding to zero (note that
/// euclidean division requires that `|remainder| < |divisor|`, and thus would otherwise
/// leave multiple possible results).
///
/// # Example
/// ```
/// # use feanor_math::primitive_int::*;
/// # use feanor_math::integer::*;
/// # use feanor_math::ring::*;
/// let mut value = -7;
/// StaticRing::<i32>::RING.euclidean_div_pow_2(&mut value, 1);
/// assert_eq!(-3, value);
/// ```
///
fn euclidean_div_pow_2(&self, value: &mut Self::Element, power: usize);
///
/// Multiplies the element by a power of two.
///
fn mul_pow_2(&self, value: &mut Self::Element, power: usize);
///
/// Computes a uniformly random integer in `[0, 2^log_bound_exclusive - 1]`, assuming that
/// `rng` provides uniformly random values in the whole range of `u64`.
///
fn get_uniformly_random_bits<G: FnMut() -> u64>(&self, log2_bound_exclusive: usize, rng: G) -> Self::Element;
///
/// Computes the rounded division, i.e. rounding to the closest integer.
/// In the case of a tie (i.e. `round(0.5)`), we round towards `+/- infinity`.
///
/// # Example
/// ```
/// # use feanor_math::primitive_int::*;
/// # use feanor_math::integer::*;
/// # use feanor_math::ring::*;
/// assert_eq!(2, StaticRing::<i32>::RING.rounded_div(7, &3));
/// assert_eq!(-2, StaticRing::<i32>::RING.rounded_div(-7, &3));
/// assert_eq!(-2, StaticRing::<i32>::RING.rounded_div(7, &-3));
/// assert_eq!(2, StaticRing::<i32>::RING.rounded_div(-7, &-3));
///
/// assert_eq!(3, StaticRing::<i32>::RING.rounded_div(8, &3));
/// assert_eq!(-3, StaticRing::<i32>::RING.rounded_div(-8, &3));
/// assert_eq!(-3, StaticRing::<i32>::RING.rounded_div(8, &-3));
/// assert_eq!(3, StaticRing::<i32>::RING.rounded_div(-8, &-3));
///
/// assert_eq!(4, StaticRing::<i32>::RING.rounded_div(7, &2));
/// assert_eq!(-4, StaticRing::<i32>::RING.rounded_div(-7, &2));
/// assert_eq!(-4, StaticRing::<i32>::RING.rounded_div(7, &-2));
/// assert_eq!(4, StaticRing::<i32>::RING.rounded_div(-7, &-2));
/// ```
///
fn rounded_div(&self, lhs: Self::Element, rhs: &Self::Element) -> Self::Element {
let mut rhs_half = self.abs(self.clone_el(rhs));
self.euclidean_div_pow_2(&mut rhs_half, 1);
if self.is_neg(&lhs) {
return self.euclidean_div(self.sub(lhs, rhs_half), rhs);
} else {
return self.euclidean_div(self.add(lhs, rhs_half), rhs);
}
}
///
/// Computes the division `lhs / rhs`, rounding towards `+ infinity`.
///
/// In particular, if `rhs` is positive, this gives the smallest
/// integer `quo` such that `quo * rhs >= lhs`. On the other hand, if
/// `rhs` is negative, this computes the largest integer `quo` such that
/// `quo * rhs <= lhs`.
///
/// # Example
/// ```
/// # use feanor_math::primitive_int::*;
/// # use feanor_math::integer::*;
/// # use feanor_math::ring::*;
/// assert_eq!(3, StaticRing::<i32>::RING.ceil_div(7, &3));
/// assert_eq!(-2, StaticRing::<i32>::RING.ceil_div(-7, &3));
/// assert_eq!(-2, StaticRing::<i32>::RING.ceil_div(7, &-3));
/// assert_eq!(3, StaticRing::<i32>::RING.ceil_div(-7, &-3));
/// ```
///
fn ceil_div(&self, lhs: Self::Element, rhs: &Self::Element) -> Self::Element {
assert!(!self.is_zero(rhs));
if self.is_zero(&lhs) {
return self.zero();
}
let one = self.one();
return match (self.is_pos(&lhs), self.is_pos(rhs)) {
(true, true) => self.add(self.euclidean_div(self.sub_ref_snd(lhs, &one), rhs), one),
(false, true) => self.euclidean_div(lhs, rhs),
(true, false) => self.euclidean_div(lhs, rhs),
(false, false) => self.add(self.euclidean_div(self.add_ref_snd(lhs, &one), rhs), one)
};
}
///
/// Computes the division `lhs / rhs`, rounding towards `- infinity`.
///
/// In particular, if `rhs` is positive, this gives the largest
/// integer `quo` such that `quo * rhs <= lhs`. On the other hand, if
/// `rhs` is negative, this computes the smallest integer `quo` such that
/// `quo * rhs >= lhs`.
///
/// # Example
/// ```
/// # use feanor_math::primitive_int::*;
/// # use feanor_math::integer::*;
/// # use feanor_math::ring::*;
/// assert_eq!(2, StaticRing::<i32>::RING.floor_div(7, &3));
/// assert_eq!(-3, StaticRing::<i32>::RING.floor_div(-7, &3));
/// assert_eq!(-3, StaticRing::<i32>::RING.floor_div(7, &-3));
/// assert_eq!(2, StaticRing::<i32>::RING.floor_div(-7, &-3));
/// ```
///
fn floor_div(&self, lhs: Self::Element, rhs: &Self::Element) -> Self::Element {
self.negate(self.ceil_div(self.negate(lhs), rhs))
}
///
/// Returns the value `2^power` in this integer ring.
///
fn power_of_two(&self, power: usize) -> Self::Element {
let mut result = self.one();
self.mul_pow_2(&mut result, power);
return result;
}
///
/// Returns `n` such that this ring can represent at least `[-2^n, ..., 2^n - 1]`.
/// Returning `None` means that the size of representable integers is unbounded.
///
fn representable_bits(&self) -> Option<usize>;
}
impl<I, J> CanHomFrom<I> for J
where I: ?Sized + IntegerRing, J: ?Sized + IntegerRing
{
type Homomorphism = ();
fn has_canonical_hom(&self, _: &I) -> Option<Self::Homomorphism> {
Some(())
}
fn map_in(&self, from: &I, el: <I as RingBase>::Element, _: &Self::Homomorphism) -> Self::Element {
int_cast(el, &RingRef::new(self), &RingRef::new(from))
}
default fn map_in_ref(&self, from: &I, el: &<I as RingBase>::Element, hom: &Self::Homomorphism) -> Self::Element {
<J as CanHomFrom<I>>::map_in(self, from, from.clone_el(el), hom)
}
}
impl<I, J> CanIsoFromTo<I> for J
where I: ?Sized + IntegerRing, J: ?Sized + IntegerRing
{
type Isomorphism = ();
fn has_canonical_iso(&self, _: &I) -> Option<Self::Isomorphism> {
Some(())
}
fn map_out(&self, from: &I, el: Self::Element, _: &Self::Isomorphism) -> <I as RingBase>::Element {
int_cast(el, &RingRef::new(from), &RingRef::new(self))
}
}
///
/// Helper trait to simplify conversion between ints.
///
/// More concretely, `IntCast` defines a conversion between two
/// integer rings, and is default-implemented for all integer rings
/// using a double-and-and technique. All implementors of integer
/// rings are encouraged to provide specializations for improved performance.
///
/// # Why yet another conversion trait?
///
/// It is a common requirement to convert between arbitrary (i.e. generic)
/// integer rings. To achieve this, we require a blanket implementation
/// anyway.
///
/// Now it would be possible to just provide a blanket implementation of
/// [`CanHomFrom`] and specialize it for all integer rings. However, specialization
/// with default types is currently a pain in the ass. Furthermore, this trait is simpler.
///
pub trait IntCast<F: ?Sized + IntegerRing>: IntegerRing {
///
/// Maps the given integer into this ring.
///
/// For the difference to [`RingStore::coerce()`] or [`RingStore::can_hom()`],
/// see the documentation of [`IntCast`].
///
fn cast(&self, from: &F, value: F::Element) -> Self::Element;
}
impl<F: ?Sized + IntegerRing, T: ?Sized + IntegerRing> IntCast<F> for T {
default fn cast(&self, from: &F, value: F::Element) -> Self::Element {
let result = algorithms::sqr_mul::generic_abs_square_and_multiply(self.one(), &value, RingRef::new(from), |a| self.add_ref(&a, &a), |a, b| self.add_ref_fst(a, b), self.zero());
if from.is_neg(&value) {
return self.negate(result);
} else {
return result;
}
}
}
///
/// Conversion of elements between two rings representing the integers `ZZ`.
///
/// The underlying conversion functionality is the same as provided by [`IntCast`], and
/// indirectly also by [`CanHomFrom`] and [`CanIsoFromTo`].
///
/// # Example
///
/// ```
/// # use feanor_math::ring::*;
/// # use feanor_math::integer::*;
/// # use feanor_math::primitive_int::*;
/// # use feanor_math::assert_el_eq;
/// let ZZi64 = StaticRing::<i64>::RING;
/// let ZZbig = BigIntRing::RING;
/// let ZZi8 = StaticRing::<i8>::RING;
/// assert_eq!(7, int_cast(7, ZZi64, ZZi8));
/// assert_eq!(65536, int_cast(ZZbig.power_of_two(16), ZZi64, ZZbig));
/// assert_el_eq!(ZZbig, ZZbig.power_of_two(16), int_cast(65536, ZZbig, ZZi64));
/// ```
///
pub fn int_cast<T: RingStore, F: RingStore>(value: El<F>, to: T, from: F) -> El<T>
where T::Type: IntegerRing, F::Type: IntegerRing
{
<T::Type as IntCast<F::Type>>::cast(to.get_ring(), from.get_ring(), value)
}
///
/// Computes the binomial coefficient of `n` and `k`, defined as `n(n - 1)...(n - k + 1)/k!`.
///
/// The above definition works for any `n` and `k >= 0`. If `k < 0`, we define the binomial coefficient
/// to be zero. This function will not overflow, if the integer rings supports number up to
/// `binomial(n, k) * k`.
///
/// # Example
/// ```
/// # use feanor_math::ring::*;
/// # use feanor_math::integer::*;
/// # use feanor_math::iters::*;
/// # use feanor_math::primitive_int::*;
/// // the binomial coefficient is equal to the number of combinations of fixed size
/// assert_eq!(
/// binomial(10, &3, StaticRing::<i64>::RING) as usize,
/// multiset_combinations(&[1; 10], 3, |_| ()).count()
/// );
/// ```
///
#[stability::unstable(feature = "enable")]
pub fn binomial<I>(n: El<I>, k: &El<I>, ring: I) -> El<I>
where I: RingStore + Copy,
I::Type: IntegerRing
{
if ring.is_neg(&n) {
let mut result = binomial(ring.sub(ring.sub_ref_fst(&k, n), ring.one()), k, ring);
if !ring.is_even(k) {
ring.negate_inplace(&mut result);
}
return result;
} else if ring.is_neg(k) || ring.is_gt(k, &n) {
return ring.zero();
} else {
// this formula works always, and is guaranteed not to overflow if k <= n/2 and `binomial(n, k) * k`
// fits into an integer; thus distinguish this case that k > n/2
let n_neg_k = ring.sub_ref(&n, &k);
if ring.is_lt(&n_neg_k, k) {
return binomial(n, &n_neg_k, ring);
}
let mut result = ring.one();
let mut i = ring.one();
while ring.is_leq(&i, &k) {
ring.mul_assign(&mut result, ring.sub_ref_snd(ring.add_ref_fst(&n, ring.one()), &i));
result = ring.checked_div(&result, &i).unwrap();
ring.add_assign(&mut i, ring.one());
}
return result;
}
}
///
/// Trait for [`RingStore`]s that store [`IntegerRing`]s. Mainly used
/// to provide a convenient interface to the `IntegerRing`-functions.
///
pub trait IntegerRingStore: RingStore
where Self::Type: IntegerRing
{
delegate!{ IntegerRing, fn to_float_approx(&self, value: &El<Self>) -> f64 }
delegate!{ IntegerRing, fn from_float_approx(&self, value: f64) -> Option<El<Self>> }
delegate!{ IntegerRing, fn abs_is_bit_set(&self, value: &El<Self>, i: usize) -> bool }
delegate!{ IntegerRing, fn abs_highest_set_bit(&self, value: &El<Self>) -> Option<usize> }
delegate!{ IntegerRing, fn abs_lowest_set_bit(&self, value: &El<Self>) -> Option<usize> }
delegate!{ IntegerRing, fn euclidean_div_pow_2(&self, value: &mut El<Self>, power: usize) -> () }
delegate!{ IntegerRing, fn mul_pow_2(&self, value: &mut El<Self>, power: usize) -> () }
delegate!{ IntegerRing, fn power_of_two(&self, power: usize) -> El<Self> }
delegate!{ IntegerRing, fn rounded_div(&self, lhs: El<Self>, rhs: &El<Self>) -> El<Self> }
delegate!{ IntegerRing, fn floor_div(&self, lhs: El<Self>, rhs: &El<Self>) -> El<Self> }
delegate!{ IntegerRing, fn ceil_div(&self, lhs: El<Self>, rhs: &El<Self>) -> El<Self> }
///
/// Using the randomness of the given rng, samples a uniformly random integer
/// from the set `{ 0, 1, ..., bound_exclusive - 1 }`.
///
/// Uses rejection sampling on top of [`IntegerRing::get_uniformly_random_bits()`].
///
fn get_uniformly_random<G: FnMut() -> u64>(&self, bound_exclusive: &El<Self>, mut rng: G) -> El<Self> {
assert!(self.is_gt(bound_exclusive, &self.zero()));
let log2_ceil_bound = self.abs_highest_set_bit(bound_exclusive).unwrap() + 1;
let mut result = self.get_ring().get_uniformly_random_bits(log2_ceil_bound, || rng());
while self.is_geq(&result, bound_exclusive) {
result = self.get_ring().get_uniformly_random_bits(log2_ceil_bound, || rng());
}
return result;
}
///
/// Computes `floor(log2(abs(value)))`, and returns `None` if the argument is 0.
///
/// This is equivalent to [`IntegerRingStore::abs_highest_set_bit`].
///
fn abs_log2_floor(&self, value: &El<Self>) -> Option<usize> {
self.abs_highest_set_bit(value)
}
///
/// Computes `ceil(log2(abs(value)))`, and returns `None` if the argument is 0.
///
fn abs_log2_ceil(&self, value: &El<Self>) -> Option<usize> {
let highest_bit = self.abs_highest_set_bit(value)?;
if self.abs_lowest_set_bit(value).unwrap() == highest_bit {
return Some(highest_bit);
} else {
return Some(highest_bit + 1);
}
}
///
/// Returns true if the given integer is divisible by 2.
///
fn is_even(&self, value: &El<Self>) -> bool {
!self.abs_is_bit_set(value, 0)
}
///
/// Returns true if the given integer is not divisible by 2.
///
fn is_odd(&self, value: &El<Self>) -> bool {
!self.is_even(value)
}
///
/// Assumes the given integer is even, and computes its quotient by 2.
///
fn half_exact(&self, mut value: El<Self>) -> El<Self> {
assert!(self.is_even(&value));
self.euclidean_div_pow_2(&mut value, 1);
return value;
}
}
impl<R> IntegerRingStore for R
where R: RingStore,
R::Type: IntegerRing
{}
#[cfg(test)]
use crate::primitive_int::*;
#[allow(missing_docs)]
#[cfg(any(test, feature = "generic_tests"))]
pub mod generic_tests {
use crate::ring::El;
use super::*;
pub fn test_integer_get_uniformly_random<R: RingStore>(ring: R)
where R::Type: IntegerRing
{
for b in [15, 16] {
let bound = ring.int_hom().map(b);
let mut rng = oorandom::Rand64::new(0);
let elements: Vec<El<R>> = (0..1000).map(|_| ring.get_uniformly_random(&bound, || rng.rand_u64())).collect();
for i in 0..b {
assert!(elements.iter().any(|x| ring.eq_el(x, &ring.int_hom().map(i))))
}
for x in &elements {
assert!(ring.is_lt(x, &bound));
}
}
}
pub fn test_integer_axioms<R: IntegerRingStore, I: Iterator<Item = El<R>>>(ring: R, edge_case_elements: I)
where R::Type: IntegerRing
{
let elements = edge_case_elements.collect::<Vec<_>>();
// test abs_highest_set_bit on standard values
assert_eq!(None, ring.abs_highest_set_bit(&ring.int_hom().map(0)));
assert_eq!(Some(0), ring.abs_highest_set_bit(&ring.int_hom().map(1)));
assert_eq!(Some(1), ring.abs_highest_set_bit(&ring.int_hom().map(2)));
// generic test of mul_pow_2 resp. euclidean_div_pow_2
for a in &elements {
let mut ceil_pow_2 = ring.int_hom().map(2);
ring.mul_pow_2(&mut ceil_pow_2, ring.abs_highest_set_bit(a).unwrap_or(0));
assert!(ring.is_lt(a, &ceil_pow_2));
assert!(ring.is_lt(&ring.negate(ring.clone_el(a)), &ceil_pow_2));
for i in 0..ring.abs_highest_set_bit(a).unwrap_or(0) {
let mut pow_2 = ring.one();
ring.mul_pow_2(&mut pow_2, i);
let mut b = ring.clone_el(a);
ring.mul_pow_2(&mut b, i);
assert_el_eq!(ring, b, ring.mul(ring.clone_el(a), ring.clone_el(&pow_2)));
ring.euclidean_div_pow_2(&mut b, i);
assert_el_eq!(ring, b, a);
ring.euclidean_div_pow_2(&mut b, i);
assert_el_eq!(ring, b, ring.euclidean_div(ring.clone_el(a), &pow_2));
}
}
// test euclidean div round to zero
let d = ring.int_hom().map(8);
for k in -10..=10 {
let mut a = ring.int_hom().map(k);
assert_el_eq!(ring, ring.int_hom().map(k / 8), ring.euclidean_div(ring.clone_el(&a), &d));
ring.euclidean_div_pow_2(&mut a, 3);
assert_el_eq!(ring, ring.int_hom().map(k / 8), a);
}
let d = ring.int_hom().map(-8);
for k in -10..=10 {
let a = ring.int_hom().map(k);
assert_el_eq!(ring, ring.int_hom().map(k / -8), ring.euclidean_div(ring.clone_el(&a), &d));
}
// test rounded_div
assert_el_eq!(ring, ring.int_hom().map(2), ring.rounded_div(ring.int_hom().map(7), &ring.int_hom().map(3)));
assert_el_eq!(ring, ring.int_hom().map(-2), ring.rounded_div(ring.int_hom().map(-7), &ring.int_hom().map(3)));
assert_el_eq!(ring, ring.int_hom().map(-2), ring.rounded_div(ring.int_hom().map(7), &ring.int_hom().map(-3)));
assert_el_eq!(ring, ring.int_hom().map(2), ring.rounded_div(ring.int_hom().map(-7), &ring.int_hom().map(-3)));
assert_el_eq!(ring, ring.int_hom().map(3), ring.rounded_div(ring.int_hom().map(8), &ring.int_hom().map(3)));
assert_el_eq!(ring, ring.int_hom().map(-3), ring.rounded_div(ring.int_hom().map(-8), &ring.int_hom().map(3)));
assert_el_eq!(ring, ring.int_hom().map(-3), ring.rounded_div(ring.int_hom().map(8), &ring.int_hom().map(-3)));
assert_el_eq!(ring, ring.int_hom().map(3), ring.rounded_div(ring.int_hom().map(-8), &ring.int_hom().map(-3)));
assert_el_eq!(ring, ring.int_hom().map(4), ring.rounded_div(ring.int_hom().map(7), &ring.int_hom().map(2)));
assert_el_eq!(ring, ring.int_hom().map(-4), ring.rounded_div(ring.int_hom().map(-7), &ring.int_hom().map(2)));
assert_el_eq!(ring, ring.int_hom().map(-4), ring.rounded_div(ring.int_hom().map(7), &ring.int_hom().map(-2)));
assert_el_eq!(ring, ring.int_hom().map(4), ring.rounded_div(ring.int_hom().map(-7), &ring.int_hom().map(-2)));
}
}
#[test]
fn test_int_div_assumption() {
assert_eq!(-1, -10 / 8);
assert_eq!(-1, 10 / -8);
assert_eq!(1, 10 / 8);
assert_eq!(1, -10 / -8);
}
#[test]
fn test_rounded_div() {
let ZZ = StaticRing::<i32>::RING;
assert_el_eq!(ZZ, 3, ZZ.rounded_div(20, &7));
assert_el_eq!(ZZ, -3, ZZ.rounded_div(-20, &7));
assert_el_eq!(ZZ, -3, ZZ.rounded_div(20, &-7));
assert_el_eq!(ZZ, 3, ZZ.rounded_div(-20, &-7));
assert_el_eq!(ZZ, 3, ZZ.rounded_div(22, &7));
assert_el_eq!(ZZ, -3, ZZ.rounded_div(-22, &7));
assert_el_eq!(ZZ, -3, ZZ.rounded_div(22, &-7));
assert_el_eq!(ZZ, 3, ZZ.rounded_div(-22, &-7));
}
#[test]
fn test_binomial() {
let ZZ = StaticRing::<i32>::RING;
assert_eq!(0, binomial(-4, &-1, ZZ));
assert_eq!(1, binomial(-4, &0, ZZ));
assert_eq!(-4, binomial(-4, &1, ZZ));
assert_eq!(10, binomial(-4, &2, ZZ));
assert_eq!(-20, binomial(-4, &3, ZZ));
assert_eq!(35, binomial(-4, &4, ZZ));
assert_eq!(-56, binomial(-4, &5, ZZ));
assert_eq!(0, binomial(3, &-1, ZZ));
assert_eq!(1, binomial(3, &0, ZZ));
assert_eq!(3, binomial(3, &1, ZZ));
assert_eq!(3, binomial(3, &2, ZZ));
assert_eq!(1, binomial(3, &3, ZZ));
assert_eq!(0, binomial(3, &4, ZZ));
assert_eq!(0, binomial(8, &-1, ZZ));
assert_eq!(1, binomial(8, &0, ZZ));
assert_eq!(8, binomial(8, &1, ZZ));
assert_eq!(28, binomial(8, &2, ZZ));
assert_eq!(56, binomial(8, &3, ZZ));
assert_eq!(70, binomial(8, &4, ZZ));
// a naive computation would overflow
assert_eq!(145422675, binomial(30, &14, ZZ));
}
#[test]
fn test_ceil_floor_div() {
let ZZ = StaticRing::<i32>::RING;
for rhs in [-10, -3, -2, -1, 1, 2, 3, 10] {
for lhs in [-10, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 10] {
let result = ZZ.ceil_div(lhs, &rhs);
assert_eq!(i32::div_ceil(lhs, rhs), result);
assert_eq!((lhs as f64 / rhs as f64).ceil() as i32, result);
let result = ZZ.floor_div(lhs, &rhs);
assert_eq!(i32::div_floor(lhs, rhs), result);
assert_eq!((lhs as f64 / rhs as f64).floor() as i32, result);
}
}
}