feanor_math/
delegate.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
use std::marker::PhantomData;

use crate::divisibility::PreparedDivisor;
use crate::pid::EuclideanRing;
use crate::pid::PrincipalIdealRing;
use crate::ring::*;
use crate::homomorphism::*;
use crate::divisibility::DivisibilityRing;
use crate::rings::extension::FreeAlgebra;
use crate::rings::{zn::ZnRing, finite::FiniteRing};
use crate::integer::{IntegerRingStore, IntegerRing};
use crate::serialization::SerializableElementRing;
use crate::specialization::*;

///
/// Trait to simplify implementing newtype-pattern for rings.
/// When you want to create a ring that just wraps another ring,
/// possibly adding some functionality, you can implement `DelegateRing`
/// instead of `RingBase`, and just provide how to map elements in the new
/// ring to the wrapped ring and vice versa.
/// 
/// # Conditional Implementations
/// 
/// Some special ring traits (e.g. [`DivisibilityRing`]) are immediately implemented 
/// for `R: DelegateRing` as soon as `R::Base: SpecialRingTrait`. However, this 
/// of course prevents any implementation fo [`DelegateRing`] to provide a custom 
/// implementation (except for specialization in some cases), due to conflicting 
/// trait impls. Hence, for other traits, we use marker traits to mark an implementation 
/// `R` of [`DelegateRing`] to also automatically implement a special ring trait as soon 
/// as `R::Base: SpecialRingTrait`. These cases are currently
///  - [`DelegateRingImplFiniteRing`] for automatic implementations of [`FiniteRing`] and
///    [`FiniteRingSpecializable`].
///  - [`DelegateRingImplEuclideanRing`] for automatic implementations of [`PrincipalIdealRing`]
///    and [`EuclideanRing`]
/// 
/// # Example
/// 
/// ```
/// # use feanor_math::ring::*;
/// # use feanor_math::homomorphism::*;
/// # use feanor_math::primitive_int::*;
/// # use feanor_math::delegate::*;
/// # use feanor_math::{assert_el_eq, impl_eq_based_self_iso};
/// 
/// #[derive(PartialEq, Clone)]
/// struct MyI32Ring;
/// struct MyI32RingEl(i32);
/// 
/// impl DelegateRing for MyI32Ring {
/// 
///     type Base = StaticRingBase<i32>;
///     type Element = MyI32RingEl;
/// 
///     fn get_delegate(&self) -> &Self::Base {
///         StaticRing::<i32>::RING.get_ring()
///     }
/// 
///     fn delegate_ref<'a>(&self, MyI32RingEl(el): &'a MyI32RingEl) -> &'a i32 {
///         el
///     }
/// 
///     fn delegate_mut<'a>(&self, MyI32RingEl(el): &'a mut MyI32RingEl) -> &'a mut i32 {
///         el
///     }
/// 
///     fn delegate(&self, MyI32RingEl(el): MyI32RingEl) -> i32 {
///         el
///     }
/// 
///     fn postprocess_delegate_mut(&self, _: &mut MyI32RingEl) {
///         // sometimes it might be necessary to fix some data of `Self::Element`
///         // if the underlying `Self::Base::Element` was modified via `delegate_mut()`;
///         // this is not the case here, so leave empty
///     }
/// 
///     fn rev_delegate(&self, el: i32) -> MyI32RingEl {
///         MyI32RingEl(el)
///     }
/// }
/// 
/// // you will have to implement `CanIsoFromTo<Self>`
/// impl_eq_based_self_iso!{ MyI32Ring }
/// 
/// let ring = RingValue::from(MyI32Ring);
/// assert_el_eq!(ring, ring.int_hom().map(1), ring.one());
/// ```
/// An example when special ring traits are automatically implemented is 
/// given by the following.
/// ```
/// # use feanor_math::ring::*;
/// # use feanor_math::homomorphism::*;
/// # use feanor_math::delegate::*;
/// # use feanor_math::{assert_el_eq, impl_eq_based_self_iso};
/// 
/// struct BoringRingWrapper<R>(R);
/// 
/// impl<R> PartialEq for BoringRingWrapper<R>
///     where R: RingStore
/// {
///     fn eq(&self, other: &Self) -> bool {
///         self.0.get_ring() == other.0.get_ring()
///     }
/// }
/// 
/// impl<R> DelegateRing for BoringRingWrapper<R>
///     where R: RingStore
/// {
///     type Base = R::Type;
///     type Element = El<R>;
/// 
///     fn get_delegate(&self) -> &Self::Base {
///         self.0.get_ring()
///     }
/// 
///     fn delegate(&self, el: Self::Element) -> <Self::Base as RingBase>::Element { el }
///     fn delegate_mut<'a>(&self, el: &'a mut Self::Element) -> &'a mut <Self::Base as RingBase>::Element { el }
///     fn delegate_ref<'a>(&self, el: &'a Self::Element) -> &'a <Self::Base as RingBase>::Element { el }
///     fn rev_delegate(&self, el: <Self::Base as RingBase>::Element) -> Self::Element { el }
/// }
/// ```
/// [`DivisibilityRing`] is automatically implemented (but can be specialized):
/// ```
/// # use feanor_math::ring::*;
/// # use feanor_math::homomorphism::*;
/// # use feanor_math::divisibility::*;
/// # use feanor_math::delegate::*;
/// # use feanor_math::{assert_el_eq, impl_eq_based_self_iso};
/// #
/// # struct BoringRingWrapper<R>(R);
/// # 
/// # impl<R> PartialEq for BoringRingWrapper<R>
/// #     where R: RingStore
/// # {
/// #     fn eq(&self, other: &Self) -> bool {
/// #         self.0.get_ring() == other.0.get_ring()
/// #     }
/// # }
/// # 
/// # impl<R> DelegateRing for BoringRingWrapper<R>
/// #     where R: RingStore
/// # {
/// #     type Base = R::Type;
/// #     type Element = El<R>;
/// # 
/// #     fn get_delegate(&self) -> &Self::Base {
/// #         self.0.get_ring()
/// #     }
/// # 
/// #     fn delegate(&self, el: Self::Element) -> <Self::Base as RingBase>::Element { el }
/// #     fn delegate_mut<'a>(&self, el: &'a mut Self::Element) -> &'a mut <Self::Base as RingBase>::Element { el }
/// #     fn delegate_ref<'a>(&self, el: &'a Self::Element) -> &'a <Self::Base as RingBase>::Element { el }
/// #     fn rev_delegate(&self, el: <Self::Base as RingBase>::Element) -> Self::Element { el }
/// # }
/// fn divide_in_wrapped_ring<R>(base_ring: R)
///     where R: RingStore,
///         R::Type: DivisibilityRing
/// {
///     let wrapped_ring = BoringRingWrapper(base_ring);
///     assert!(wrapped_ring.checked_div(&wrapped_ring.one(), &wrapped_ring.one()).is_some());
/// }
/// ```
/// [`FiniteRing`] for example is not automatically implemented:
/// ```compile_fail
/// # use feanor_math::ring::*;
/// # use feanor_math::homomorphism::*;
/// # use feanor_math::rings::finite::*;
/// # use feanor_math::integer::*;
/// # use feanor_math::delegate::*;
/// # use feanor_math::{assert_el_eq, impl_eq_based_self_iso};
/// #
/// # impl<R> PartialEq for BoringRingWrapper<R>
/// #     where R: RingStore
/// # {
/// #     fn eq(&self, other: &Self) -> bool {
/// #         self.0.get_ring() == other.0.get_ring()
/// #     }
/// # }
/// #
/// # struct BoringRingWrapper<R>(R);
/// # 
/// # impl<R> DelegateRing for BoringRingWrapper<R>
/// #     where R: RingStore
/// # {
/// #     type Base = R::Type;
/// #     type Element = El<R>;
/// # 
/// #     fn get_delegate(&self) -> &Self::Base {
/// #         self.0.get_ring()
/// #     }
/// # 
/// #     fn delegate(&self, el: Self::Element) -> <Self::Base as RingBase>::Element { el }
/// #     fn delegate_mut<'a>(&self, el: &'a mut Self::Element) -> &'a mut <Self::Base as RingBase>::Element { el }
/// #     fn delegate_ref<'a>(&self, el: &'a Self::Element) -> &'a <Self::Base as RingBase>::Element { el }
/// #     fn rev_delegate(&self, el: <Self::Base as RingBase>::Element) -> Self::Element { el }
/// # }
/// fn size_of_wrapped_ring<R>(base_ring: R)
///     where R: RingStore,
///         R::Type: FiniteRing
/// {
///     let wrapped_ring = BoringRingWrapper(base_ring);
///     assert!(wrapped_ring.size(BigIntRing::RING).is_some());
/// }
/// ```
/// But we can add a delegate-implementation of [`FiniteRing`] by adding the marker trait [`DelegateRingImplFiniteRing`]:
/// ```
/// # use feanor_math::ring::*;
/// # use feanor_math::homomorphism::*;
/// # use feanor_math::rings::finite::*;
/// # use feanor_math::integer::*;
/// # use feanor_math::delegate::*;
/// # use feanor_math::{assert_el_eq, impl_eq_based_self_iso};
/// #
/// # impl<R> PartialEq for BoringRingWrapper<R>
/// #     where R: RingStore
/// # {
/// #     fn eq(&self, other: &Self) -> bool {
/// #         self.0.get_ring() == other.0.get_ring()
/// #     }
/// # }
/// # 
/// # struct BoringRingWrapper<R>(R);
/// # 
/// # impl<R> DelegateRing for BoringRingWrapper<R>
/// #     where R: RingStore
/// # {
/// #     type Base = R::Type;
/// #     type Element = El<R>;
/// # 
/// #     fn get_delegate(&self) -> &Self::Base {
/// #         self.0.get_ring()
/// #     }
/// # 
/// #     fn delegate(&self, el: Self::Element) -> <Self::Base as RingBase>::Element { el }
/// #     fn delegate_mut<'a>(&self, el: &'a mut Self::Element) -> &'a mut <Self::Base as RingBase>::Element { el }
/// #     fn delegate_ref<'a>(&self, el: &'a Self::Element) -> &'a <Self::Base as RingBase>::Element { el }
/// #     fn rev_delegate(&self, el: <Self::Base as RingBase>::Element) -> Self::Element { el }
/// # }
/// impl<R> DelegateRingImplFiniteRing for BoringRingWrapper<R>
///     where R: RingStore
/// {}
/// 
/// fn size_of_wrapped_ring<R>(base_ring: R)
///     where R: RingStore,
///         R::Type: FiniteRing
/// {
///     let wrapped_ring = BoringRingWrapper(base_ring);
///     assert!(wrapped_ring.size(BigIntRing::RING).is_some());
/// }
/// ```
/// 
pub trait DelegateRing: PartialEq {

    type Base: ?Sized + RingBase;
    type Element;

    fn get_delegate(&self) -> &Self::Base;
    fn delegate_ref<'a>(&self, el: &'a Self::Element) -> &'a <Self::Base as RingBase>::Element;
    fn delegate_mut<'a>(&self, el: &'a mut Self::Element) -> &'a mut <Self::Base as RingBase>::Element;
    fn delegate(&self, el: Self::Element) -> <Self::Base as RingBase>::Element;
    fn rev_delegate(&self, el: <Self::Base as RingBase>::Element) -> Self::Element;
    
    fn postprocess_delegate_mut(&self, el: &mut Self::Element) {
        *el = self.rev_delegate(self.get_delegate().clone_el(self.delegate_ref(el)));
    }

    ///
    /// Necessary in some locations to satisfy the type system
    /// 
    fn element_cast(&self, el: Self::Element) -> <Self as RingBase>::Element {
        el
    }

    ///
    /// Necessary in some locations to satisfy the type system
    /// 
    fn rev_element_cast(&self, el: <Self as RingBase>::Element) -> Self::Element {
        el
    }

    ///
    /// Necessary in some locations to satisfy the type system
    /// 
    fn rev_element_cast_ref<'a>(&self, el: &'a <Self as RingBase>::Element) -> &'a Self::Element {
        el
    }
}

impl<R: DelegateRing + PartialEq + ?Sized> RingBase for R {

    type Element = <Self as DelegateRing>::Element;

    default fn clone_el(&self, val: &Self::Element) -> Self::Element {
        self.rev_delegate(self.get_delegate().clone_el(self.delegate_ref(val)))
    }
    
    default fn add_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element) {
        self.get_delegate().add_assign_ref(self.delegate_mut(lhs), self.delegate_ref(rhs));
        self.postprocess_delegate_mut(lhs);
    }

    default fn add_assign(&self, lhs: &mut Self::Element, rhs: Self::Element) {
        self.get_delegate().add_assign(self.delegate_mut(lhs), self.delegate(rhs));
        self.postprocess_delegate_mut(lhs);
    }

    default fn sub_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element) {
        self.get_delegate().sub_assign_ref(self.delegate_mut(lhs), self.delegate_ref(rhs));
        self.postprocess_delegate_mut(lhs);
    }

    default fn sub_self_assign(&self, lhs: &mut Self::Element, rhs: Self::Element) {
        self.get_delegate().sub_self_assign(self.delegate_mut(lhs), self.delegate(rhs));
        self.postprocess_delegate_mut(lhs);
    }

    default fn sub_self_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element) {
        self.get_delegate().sub_self_assign_ref(self.delegate_mut(lhs), self.delegate_ref(rhs));
        self.postprocess_delegate_mut(lhs);
    }

    default fn negate_inplace(&self, lhs: &mut Self::Element) {
        self.get_delegate().negate_inplace(self.delegate_mut(lhs));
        self.postprocess_delegate_mut(lhs);
    }

    default fn mul_assign(&self, lhs: &mut Self::Element, rhs: Self::Element) {
        self.get_delegate().mul_assign(self.delegate_mut(lhs), self.delegate(rhs));
        self.postprocess_delegate_mut(lhs);
    }

    default fn mul_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element) {
        self.get_delegate().mul_assign_ref(self.delegate_mut(lhs), self.delegate_ref(rhs));
        self.postprocess_delegate_mut(lhs);
    }

    default fn square(&self, value: &mut Self::Element) {
        self.get_delegate().square(self.delegate_mut(value));
        self.postprocess_delegate_mut(value);
    }

    default fn zero(&self) -> Self::Element {
        self.rev_delegate(self.get_delegate().zero())
    }

    default fn one(&self) -> Self::Element {
        self.rev_delegate(self.get_delegate().one())
    }

    default fn neg_one(&self) -> Self::Element {
        self.rev_delegate(self.get_delegate().neg_one())
    }

    default fn from_int(&self, value: i32) -> Self::Element {
        self.rev_delegate(self.get_delegate().from_int(value))
    }

    default fn eq_el(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool {
        self.get_delegate().eq_el(self.delegate_ref(lhs), self.delegate_ref(rhs))
    }

    default fn is_zero(&self, value: &Self::Element) -> bool {
        self.get_delegate().is_zero(self.delegate_ref(value))
    }

    default fn is_one(&self, value: &Self::Element) -> bool {
        self.get_delegate().is_one(self.delegate_ref(value))
    }

    default fn is_neg_one(&self, value: &Self::Element) -> bool {
        self.get_delegate().is_neg_one(self.delegate_ref(value))
    }

    default fn is_commutative(&self) -> bool {
        self.get_delegate().is_commutative()
    }

    default fn is_noetherian(&self) -> bool {
        self.get_delegate().is_noetherian()
    }

    default fn dbg<'a>(&self, value: &Self::Element, out: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
        self.get_delegate().dbg(self.delegate_ref(value), out)
    }

    default fn dbg_within<'a>(&self, value: &Self::Element, out: &mut std::fmt::Formatter<'a>, env: EnvBindingStrength) -> std::fmt::Result {
        self.get_delegate().dbg_within(self.delegate_ref(value), out, env)
    }

    default fn negate(&self, value: Self::Element) -> Self::Element {
        self.rev_delegate(self.get_delegate().negate(self.delegate(value)))
    }
    
    default fn sub_assign(&self, lhs: &mut Self::Element, rhs: Self::Element) {
        self.get_delegate().sub_assign(self.delegate_mut(lhs), self.delegate(rhs));
        self.postprocess_delegate_mut(lhs);
    }

    default fn add_ref(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element {
        self.rev_delegate(self.get_delegate().add_ref(self.delegate_ref(lhs), self.delegate_ref(rhs)))
    }

    default fn add_ref_fst(&self, lhs: &Self::Element, rhs: Self::Element) -> Self::Element {
        self.rev_delegate(self.get_delegate().add_ref_fst(self.delegate_ref(lhs), self.delegate(rhs)))
    }

    default fn add_ref_snd(&self, lhs: Self::Element, rhs: &Self::Element) -> Self::Element {
        self.rev_delegate(self.get_delegate().add_ref_snd(self.delegate(lhs), self.delegate_ref(rhs)))
    }

    default fn add(&self, lhs: Self::Element, rhs: Self::Element) -> Self::Element {
        self.rev_delegate(self.get_delegate().add(self.delegate(lhs), self.delegate(rhs)))
    }

    default fn sub_ref(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element {
        self.rev_delegate(self.get_delegate().sub_ref(self.delegate_ref(lhs), self.delegate_ref(rhs)))
    }

    default fn sub_ref_fst(&self, lhs: &Self::Element, rhs: Self::Element) -> Self::Element {
        self.rev_delegate(self.get_delegate().sub_ref_fst(self.delegate_ref(lhs), self.delegate(rhs)))
    }

    default fn sub_ref_snd(&self, lhs: Self::Element, rhs: &Self::Element) -> Self::Element {
        self.rev_delegate(self.get_delegate().sub_ref_snd(self.delegate(lhs), self.delegate_ref(rhs)))
    }

    default fn sub(&self, lhs: Self::Element, rhs: Self::Element) -> Self::Element {
        self.rev_delegate(self.get_delegate().sub(self.delegate(lhs), self.delegate(rhs)))
    }

    default fn mul_ref(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element {
        self.rev_delegate(self.get_delegate().mul_ref(self.delegate_ref(lhs), self.delegate_ref(rhs)))
    }

    default fn mul_ref_fst(&self, lhs: &Self::Element, rhs: Self::Element) -> Self::Element {
        self.rev_delegate(self.get_delegate().mul_ref_fst(self.delegate_ref(lhs), self.delegate(rhs)))
    }

    default fn mul_ref_snd(&self, lhs: Self::Element, rhs: &Self::Element) -> Self::Element {
        self.rev_delegate(self.get_delegate().mul_ref_snd(self.delegate(lhs), self.delegate_ref(rhs)))
    }

    default fn mul(&self, lhs: Self::Element, rhs: Self::Element) -> Self::Element {
        self.rev_delegate(self.get_delegate().mul(self.delegate(lhs), self.delegate(rhs)))
    }
    
    default fn is_approximate(&self) -> bool { self.get_delegate().is_approximate() }

    default fn mul_assign_int(&self, lhs: &mut Self::Element, rhs: i32) {
        self.get_delegate().mul_assign_int(self.delegate_mut(lhs), rhs);
        self.postprocess_delegate_mut(lhs);
    }

    default fn mul_int(&self, lhs: Self::Element, rhs: i32) -> Self::Element {
        self.rev_delegate(self.get_delegate().mul_int(self.delegate(lhs), rhs))
    }

    default fn mul_int_ref(&self, lhs: &Self::Element, rhs: i32) -> Self::Element {
        self.rev_delegate(self.get_delegate().mul_int_ref(self.delegate_ref(lhs), rhs))
    }
    
    default fn pow_gen<S: IntegerRingStore>(&self, x: Self::Element, power: &El<S>, integers: S) -> Self::Element 
        where S::Type: IntegerRing
    {
        self.rev_delegate(self.get_delegate().pow_gen(self.delegate(x), power, integers))
    }

    default fn characteristic<I: IntegerRingStore + Copy>(&self, ZZ: I) -> Option<El<I>>
        where I::Type: IntegerRing
    {
        self.get_delegate().characteristic(ZZ)
    }
}

impl<R: DelegateRing + ?Sized> DivisibilityRing for R
    where R::Base: DivisibilityRing
{
    type PreparedDivisorData = PreparedDivisor<R::Base>;

    default fn checked_left_div(&self, lhs: &Self::Element, rhs: &Self::Element) -> Option<Self::Element> {
        self.get_delegate().checked_left_div(self.delegate_ref(lhs), self.delegate_ref(rhs))
            .map(|x| self.rev_delegate(x))
    }

    default fn balance_factor<'a, I>(&self, elements: I) -> Option<Self::Element>
        where I: Iterator<Item = &'a Self::Element>,
            Self: 'a
    {
        self.get_delegate().balance_factor(elements.map(|x| self.delegate_ref(x))).map(|c| self.rev_delegate(c))
    }

    fn prepare_divisor(&self, x: Self::Element) -> PreparedDivisor<Self> {
        let prepared = self.get_delegate().prepare_divisor(self.delegate(x));
        PreparedDivisor {
            element: self.rev_delegate(self.get_delegate().clone_el(&prepared.element)),
            data: prepared
        }
    }

    default fn checked_left_div_prepared(&self, lhs: &Self::Element, rhs: &PreparedDivisor<Self>) -> Option<Self::Element> {
        self.get_delegate().checked_left_div_prepared(self.delegate_ref(lhs), &rhs.data)
            .map(|res| self.rev_delegate(res))
    }

    default fn divides_left_prepared(&self, lhs: &Self::Element, rhs: &PreparedDivisor<Self>) -> bool {
        self.checked_left_div_prepared(lhs, rhs).is_some()
    }
}

impl<R: DelegateRing + ?Sized> SerializableElementRing for R
    where R::Base: DivisibilityRing + SerializableElementRing
{
    default fn serialize<S>(&self, el: &Self::Element, serializer: S) -> Result<S::Ok, S::Error>
        where S: serde::Serializer
    {
        self.get_delegate().serialize(self.delegate_ref(el), serializer)
    }

    default fn deserialize<'de, D>(&self, deserializer: D) -> Result<Self::Element, D::Error>
        where D: serde::Deserializer<'de>
    {
        self.get_delegate().deserialize(deserializer).map(|x| self.rev_delegate(x))
    }
}

pub struct DelegateFiniteRingElementsIter<'a, R: ?Sized>
    where R: DelegateRing, R::Base: FiniteRing
{
    ring: &'a R,
    base: <R::Base as FiniteRing>::ElementsIter<'a>
}

impl<'a, R: ?Sized> Clone for DelegateFiniteRingElementsIter<'a, R>
    where R: DelegateRing, R::Base: FiniteRing
{
    fn clone(&self) -> Self {
        Self { ring: self.ring, base: self.base.clone() }
    }
}

impl<'a, R: ?Sized> Iterator for DelegateFiniteRingElementsIter<'a, R>
    where R: DelegateRing, R::Base: FiniteRing
{
    type Item = <R as RingBase>::Element;

    fn next(&mut self) -> Option<Self::Item> {
        self.base.next().map(|x| self.ring.rev_delegate(x))
    }
}

///
/// Marks a [`DelegateRing`] `R` to be considered in the blanket implementation
/// `R: FiniteRing where R::Base: FiniteRing`.
/// 
/// We don't want to implement `R: FiniteRing` for any `DelegateRing` `R`, since
/// some ring newtypes want to have control of when the ring is [`FiniteRing`].
/// 
pub trait DelegateRingImplFiniteRing: DelegateRing {}

impl<R: DelegateRingImplFiniteRing + ?Sized> FiniteRing for R
    where R::Base: FiniteRing
{
    type ElementsIter<'a> = DelegateFiniteRingElementsIter<'a, R>
        where R: 'a;

    fn elements<'a>(&'a self) -> Self::ElementsIter<'a> {
        DelegateFiniteRingElementsIter {
            ring: self,
            base: self.get_delegate().elements()
        }
    }
    
    default fn random_element<G: FnMut() -> u64>(&self, rng: G) -> <R as RingBase>::Element {
        self.element_cast(self.rev_delegate(self.get_delegate().random_element(rng)))
    }

    default fn size<I: IntegerRingStore + Copy>(&self, ZZ: I) -> Option<El<I>>
        where I::Type: IntegerRing
    {
        self.get_delegate().size(ZZ)
    }
}

impl<R: DelegateRing + ?Sized> HashableElRing for R 
    where R::Base: HashableElRing
{
    default fn hash<H: std::hash::Hasher>(&self, el: &Self::Element, h: &mut H) {
        self.get_delegate().hash(self.delegate_ref(el), h)
    }
}

///
/// Marks a [`DelegateRing`] `R` to be considered in the blanket implementation
/// `R: EuclideanRing where R::Base: EuclideanRing` and 
/// `R: PrincipalIdealRing where R::Base: PrincipalIdealRing`.
/// 
/// We don't want to implement `R: EuclideanRing` for any `DelegateRing` `R`, since
/// some ring newtypes want to have control of when the ring is [`EuclideanRing`].
/// 
pub trait DelegateRingImplEuclideanRing: DelegateRing {}

impl<R: DelegateRingImplEuclideanRing + ?Sized> PrincipalIdealRing for R
    where R::Base: PrincipalIdealRing
{
    default fn checked_div_min(&self, lhs: &Self::Element, rhs: &Self::Element) -> Option<Self::Element> {
        self.get_delegate().checked_div_min(self.delegate_ref(lhs), self.delegate_ref(rhs)).map(|res| self.rev_delegate(res))
    }

    default fn extended_ideal_gen(&self, lhs: &Self::Element, rhs: &Self::Element) -> (Self::Element, Self::Element, Self::Element) {
        let (s, t, d) = self.get_delegate().extended_ideal_gen(self.delegate_ref(self.rev_element_cast_ref(lhs)), self.delegate_ref(self.rev_element_cast_ref(rhs)));
        return (self.element_cast(self.rev_delegate(s)), self.element_cast(self.rev_delegate(t)), self.element_cast(self.rev_delegate(d)));
    }

    default fn ideal_gen(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element {
        self.element_cast(self.rev_delegate(self.get_delegate().ideal_gen(self.delegate_ref(self.rev_element_cast_ref(lhs)), self.delegate_ref(self.rev_element_cast_ref(rhs)))))
    }
}

impl<R: DelegateRingImplEuclideanRing + ?Sized> EuclideanRing for R
    where R::Base: EuclideanRing
{
    default fn euclidean_div_rem(&self, lhs: Self::Element, rhs: &Self::Element) -> (Self::Element, Self::Element) {
        let (q, r) = self.get_delegate().euclidean_div_rem(self.delegate(lhs), self.delegate_ref(rhs));
        return (self.rev_delegate(q), self.rev_delegate(r));
    }

    fn euclidean_deg(&self, val: &Self::Element) -> Option<usize> {
        self.get_delegate().euclidean_deg(self.delegate_ref(val))
    }

    fn euclidean_div(&self, lhs: Self::Element, rhs: &Self::Element) -> Self::Element {
        self.rev_delegate(self.get_delegate().euclidean_div(self.delegate(lhs), self.delegate_ref(rhs)))
    }

    fn euclidean_rem(&self, lhs: Self::Element, rhs: &Self::Element) -> Self::Element {
        self.rev_delegate(self.get_delegate().euclidean_rem(self.delegate(lhs), self.delegate_ref(rhs)))
    }
}

impl<R> FiniteRingSpecializable for R
    where R: DelegateRingImplFiniteRing + ?Sized,
        R::Base: FiniteRingSpecializable
{
    fn specialize<O: FiniteRingOperation<Self>>(op: O) -> Result<O::Output, ()> {
        struct OpWrapper<R, O>
            where R: DelegateRingImplFiniteRing + ?Sized,
                R::Base: FiniteRingSpecializable,
                O: FiniteRingOperation<R>
        {
            operation: O,
            ring: PhantomData<Box<R>>
        }

        impl<R, O> FiniteRingOperation<R::Base> for OpWrapper<R, O>
            where R: DelegateRingImplFiniteRing + ?Sized,
                R::Base: FiniteRingSpecializable,
                O: FiniteRingOperation<R>
        {
            type Output = O::Output;
            fn execute(self) -> Self::Output where R::Base: FiniteRing {
                self.operation.execute()
            }
        }

        <R::Base as FiniteRingSpecializable>::specialize(OpWrapper { operation: op, ring: PhantomData })
    }
}

impl<R: DelegateRingImplFiniteRing + ?Sized> ZnRing for R
    where R::Base: ZnRing, 
        Self: PrincipalIdealRing,
        R: CanHomFrom<<R::Base as ZnRing>::IntegerRingBase>
{
    type IntegerRingBase = <R::Base as ZnRing>::IntegerRingBase;
    type IntegerRing = <R::Base as ZnRing>::IntegerRing;

    default fn integer_ring(&self) -> &Self::IntegerRing {
        self.get_delegate().integer_ring()
    }

    default fn modulus(&self) -> &El<Self::IntegerRing> {
        self.get_delegate().modulus()
    }

    default fn smallest_positive_lift(&self, el: Self::Element) -> El<Self::IntegerRing> {
        self.get_delegate().smallest_positive_lift(self.delegate(self.rev_element_cast(el)))
    }

    default fn smallest_lift(&self, el: Self::Element) -> El<Self::IntegerRing> {
        self.get_delegate().smallest_lift(self.delegate(self.rev_element_cast(el)))
    }

    default fn from_int_promise_reduced(&self, x: El<Self::IntegerRing>) -> Self::Element {
        self.element_cast(self.rev_delegate(self.get_delegate().from_int_promise_reduced(x)))
    }
}

impl<R> RingExtension for R 
    where R: DelegateRing,
        R::Base: RingExtension
{
    type BaseRing = <R::Base as RingExtension>::BaseRing;

    fn base_ring<'a>(&'a self) -> &'a Self::BaseRing {
        self.get_delegate().base_ring()
    }

    fn from(&self, x: El<Self::BaseRing>) -> Self::Element {
        self.rev_delegate(self.get_delegate().from(x))
    }
}

impl<R> FreeAlgebra for R 
    where R: DelegateRing,
        <R as DelegateRing>::Base: FreeAlgebra
{
    type VectorRepresentation<'a> = <<R as DelegateRing>::Base as FreeAlgebra>::VectorRepresentation<'a>
        where Self: 'a;

    default fn canonical_gen(&self) -> Self::Element {
        self.rev_delegate(self.get_delegate().canonical_gen())
    }

    default fn from_canonical_basis<V>(&self, vec: V) -> Self::Element
        where V: IntoIterator<Item = El<Self::BaseRing>>,
            V::IntoIter: DoubleEndedIterator
    {
        self.rev_delegate(self.get_delegate().from_canonical_basis(vec.into_iter().map(|x| x)))
    }

    default fn rank(&self) -> usize {
        self.get_delegate().rank()
    }

    default fn wrt_canonical_basis<'a>(&'a self, el: &'a Self::Element) -> Self::VectorRepresentation<'a> {
        self.get_delegate().wrt_canonical_basis(self.delegate_ref(el))
    }
}

#[stability::unstable(feature = "enable")]
pub struct WrapHom<'a, R>
    where R: DelegateRing
{
    to: RingRef<'a, R>,
    from: RingRef<'a, R::Base>
}

impl<'a, R> WrapHom<'a, R>
    where R: DelegateRing
{
    #[stability::unstable(feature = "enable")]
    pub fn new(ring: &'a R) -> Self {
        Self {
            to: RingRef::new(ring),
            from: RingRef::new(ring.get_delegate())
        }
    }
}

impl<'a, R> Homomorphism<<R as DelegateRing>::Base, R> for WrapHom<'a, R>
    where R: DelegateRing
{
    type DomainStore = RingRef<'a, <R as DelegateRing>::Base>;
    type CodomainStore = RingRef<'a, R>;

    fn domain<'b>(&'b self) -> &'b Self::DomainStore {
        &self.from
    }

    fn codomain<'b>(&'b self) -> &'b Self::CodomainStore {
        &self.to
    }

    fn map(&self, x: <<R as DelegateRing>::Base as RingBase>::Element) -> <R as RingBase>::Element {
        self.to.get_ring().element_cast(self.to.get_ring().rev_delegate(x))
    }
}

#[stability::unstable(feature = "enable")]
pub struct UnwrapHom<'a, R>
    where R: DelegateRing
{
    from: RingRef<'a, R>,
    to: RingRef<'a, R::Base>
}

impl<'a, R> UnwrapHom<'a, R>
    where R: DelegateRing
{
    #[stability::unstable(feature = "enable")]
    pub fn new(ring: &'a R) -> Self {
        Self {
            from: RingRef::new(ring),
            to: RingRef::new(ring.get_delegate())
        }
    }
}

impl<'a, R> Homomorphism<R, <R as DelegateRing>::Base> for UnwrapHom<'a, R>
    where R: DelegateRing
{
    type DomainStore = RingRef<'a, R>;
    type CodomainStore = RingRef<'a, <R as DelegateRing>::Base>;

    fn domain<'b>(&'b self) -> &'b Self::DomainStore {
        &self.from
    }

    fn codomain<'b>(&'b self) -> &'b Self::CodomainStore {
        &self.to
    }

    fn map(&self, x: <R as RingBase>::Element) -> <<R as DelegateRing>::Base as RingBase>::Element {
        self.from.get_ring().delegate(self.from.get_ring().rev_element_cast(x))
    }
}