feanor_math/algorithms/poly_factor/
extension.rsuse crate::algorithms;
use crate::algorithms::poly_factor::FactorPolyField;
use crate::algorithms::poly_gcd::PolyTFracGCDRing;
use crate::compute_locally::InterpolationBaseRing;
use crate::field::*;
use crate::homomorphism::*;
use crate::ordered::OrderedRingStore;
use crate::pid::EuclideanRing;
use crate::primitive_int::StaticRing;
use crate::ring::*;
use crate::rings::extension::FreeAlgebra;
use crate::rings::extension::FreeAlgebraStore;
use crate::rings::poly::dense_poly::DensePolyRing;
use crate::rings::poly::{PolyRing, PolyRingStore};
use crate::integer::*;
use crate::MAX_PROBABILISTIC_REPETITIONS;
use crate::specialization::FiniteRingSpecializable;
#[stability::unstable(feature = "enable")]
pub struct ProbablyNotSquarefree;
#[stability::unstable(feature = "enable")]
pub fn poly_factor_squarefree_extension<P>(LX: P, f: &El<P>, attempts: usize) -> Result<Vec<El<P>>, ProbablyNotSquarefree>
where P: RingStore,
P::Type: PolyRing + EuclideanRing,
<<P::Type as RingExtension>::BaseRing as RingStore>::Type: Field + FreeAlgebra + PolyTFracGCDRing,
<<<<P::Type as RingExtension>::BaseRing as RingStore>::Type as RingExtension>::BaseRing as RingStore>::Type: PerfectField + PolyTFracGCDRing + FactorPolyField + InterpolationBaseRing + FiniteRingSpecializable
{
let L = LX.base_ring();
let K = L.base_ring();
assert!(LX.base_ring().is_one(LX.lc(f).unwrap()));
let KX = DensePolyRing::new(K, "X");
let KXY = DensePolyRing::new(KX.clone(), "Y");
let Norm = |f: El<P>| {
let f_over_KY = <_ as RingStore>::sum(&KXY,
LX.terms(&f).map(|(c, i)| {
let mut result = L.poly_repr(&KXY, c, KX.inclusion());
KXY.inclusion().mul_assign_map(&mut result, KX.pow(KX.indeterminate(), i));
result
})
);
let gen_poly = L.generating_poly(&KXY, KX.inclusion());
return algorithms::resultant::resultant_local::<&DensePolyRing<_>>(&KXY, f_over_KY, gen_poly);
};
let ZZbig = BigIntRing::RING;
let characteristic = K.characteristic(&ZZbig).unwrap();
let bound = LX.degree(f).unwrap() * LX.degree(f).unwrap() * L.rank();
assert!(ZZbig.is_zero(&characteristic) || ZZbig.is_geq(&characteristic, &int_cast(bound as i64, ZZbig, StaticRing::<i64>::RING)));
let mut rng = oorandom::Rand64::new(1);
for _ in 0..attempts {
let k = StaticRing::<i32>::RING.get_uniformly_random(&(bound as i32), || rng.rand_u64());
let lin_transform = LX.from_terms([(L.mul(L.canonical_gen(), L.int_hom().map(k)), 0), (L.one(), 1)].into_iter());
let f_transformed = LX.evaluate(f, &lin_transform, &LX.inclusion());
let norm_f_transformed = Norm(LX.clone_el(&f_transformed));
let degree = KX.degree(&norm_f_transformed).unwrap();
let squarefree_part = <_ as PolyTFracGCDRing>::squarefree_part(&KX, &norm_f_transformed);
if KX.degree(&squarefree_part).unwrap() == degree {
let lin_transform_rev = LX.from_terms([(L.mul(L.canonical_gen(), L.int_hom().map(-k)), 0), (L.one(), 1)].into_iter());
let (factorization, _unit) = <_ as FactorPolyField>::factor_poly(&KX, &squarefree_part);
return Ok(factorization.into_iter().map(|(factor, e)| {
assert!(e == 1);
let f_factor = LX.normalize(<_ as PolyTFracGCDRing>::gcd(&LX, &f_transformed, &LX.lifted_hom(&KX, L.inclusion()).map(factor)));
return LX.evaluate(&f_factor, &lin_transform_rev, &LX.inclusion());
}).collect());
}
}
return Err(ProbablyNotSquarefree);
}
#[stability::unstable(feature = "enable")]
pub fn poly_factor_extension<P>(poly_ring: P, f: &El<P>) -> (Vec<(El<P>, usize)>, El<<P::Type as RingExtension>::BaseRing>)
where P: RingStore,
P::Type: PolyRing + EuclideanRing,
<<P::Type as RingExtension>::BaseRing as RingStore>::Type: FreeAlgebra + PerfectField + FiniteRingSpecializable + PolyTFracGCDRing,
<<<<P::Type as RingExtension>::BaseRing as RingStore>::Type as RingExtension>::BaseRing as RingStore>::Type: PerfectField + PolyTFracGCDRing + FactorPolyField + InterpolationBaseRing + FiniteRingSpecializable
{
let KX = &poly_ring;
let K = KX.base_ring();
assert!(!KX.is_zero(f));
let mut result: Vec<(El<P>, usize)> = Vec::new();
for (non_irred_factor, k) in <_ as PolyTFracGCDRing>::power_decomposition(KX, f) {
for factor in poly_factor_squarefree_extension(KX, &non_irred_factor, MAX_PROBABILISTIC_REPETITIONS).ok().unwrap() {
if let Some((i, _)) = result.iter().enumerate().filter(|(_, f)| KX.eq_el(&f.0, &factor)).next() {
result[i].1 += k;
} else {
result.push((factor, k));
}
}
}
return (result, K.clone_el(KX.coefficient_at(f, 0)));
}