use crate::algorithms::matmul::MatmulAlgorithm;
use crate::algorithms::matmul::STANDARD_MATMUL;
use crate::field::*;
use crate::integer::*;
use crate::homomorphism::*;
use crate::matrix::*;
use crate::matrix::transform::TransformTarget;
use crate::primitive_int::*;
use crate::rings::float_real::Real64;
use crate::rings::float_real::Real64Base;
use crate::rings::rational::*;
use crate::ordered::{OrderedRing, OrderedRingStore};
use crate::ring::*;
use std::alloc::Allocator;
use std::cmp::max;
use std::marker::PhantomData;
#[stability::unstable(feature = "enable")]
pub trait LLLRealField<I>: OrderedRing + Field
where I: ?Sized + IntegerRing
{
fn from_integer(&self, x: I::Element, ZZ: &I) -> Self::Element;
fn round_to_integer(&self, x: &Self::Element, ZZ: &I) -> I::Element;
}
impl<I, J> LLLRealField<J> for RationalFieldBase<I>
where I: IntegerRingStore,
I::Type: IntegerRing,
J: ?Sized + IntegerRing
{
fn from_integer(&self, x: J::Element, ZZ: &J) -> Self::Element {
RingRef::new(self).inclusion().map(int_cast(x, self.base_ring(), RingRef::new(ZZ)))
}
fn round_to_integer(&self, x: &Self::Element, ZZ: &J) -> J::Element {
int_cast(self.base_ring().rounded_div(self.base_ring().clone_el(self.num(x)), self.den(x)), RingRef::new(ZZ), self.base_ring())
}
}
impl<J> LLLRealField<J> for Real64Base
where J: ?Sized + IntegerRing
{
fn from_integer(&self, x: J::Element, ZZ: &J) -> Self::Element {
ZZ.to_float_approx(&x)
}
fn round_to_integer(&self, x: &Self::Element, ZZ: &J) -> J::Element {
int_cast(x.round() as i64, RingRef::new(ZZ), StaticRing::<i64>::RING)
}
}
fn size_reduce<R, I, V, T>(ring: R, int_ring: I, mut target: SubmatrixMut<V, El<R>>, target_j: usize, matrix: Submatrix<V, El<R>>, col_ops: &mut T)
where R: RingStore,
R::Type: LLLRealField<I::Type>,
I: IntegerRingStore + Copy,
I::Type: IntegerRing,
V: AsPointerToSlice<El<R>>,
T: TransformTarget<I::Type>
{
for j in (0..matrix.col_count()).rev() {
let factor = ring.get_ring().round_to_integer(target.as_const().at(j, 0), int_ring.get_ring());
col_ops.subtract(int_ring, j, target_j, &factor);
let factor = ring.get_ring().from_integer(factor, int_ring.get_ring());
ring.sub_assign_ref(target.at_mut(j, 0), &factor);
for k in 0..j {
ring.sub_assign(target.at_mut(k, 0), ring.mul_ref(matrix.at(k, j), &factor));
}
}
}
fn swap_gso_cols<R, V>(ring: R, mut gso: SubmatrixMut<V, El<R>>, i: usize, j: usize)
where R: RingStore,
R::Type: OrderedRing + Field,
V: AsPointerToSlice<El<R>>
{
assert!(j == i + 1);
let col_count = gso.col_count();
let (mut col_i, mut col_i1) = gso.reborrow().restrict_cols(i..(i + 2)).split_cols(0..1, 1..2);
for k in 0..i {
std::mem::swap(col_i.at_mut(k, 0), col_i1.at_mut(k, 0));
}
let bi_star_norm_sqr = ring.clone_el(gso.at(i, i));
let bi1_star_norm_sqr = ring.clone_el(gso.at(i + 1, i + 1));
let mu = ring.clone_el(gso.at(i, i + 1));
let mu_sqr = ring.pow(ring.clone_el(&mu), 2);
let new_bi_star_norm_sqr = ring.add_ref_fst(&bi1_star_norm_sqr, ring.mul_ref(&mu_sqr, &bi_star_norm_sqr));
let gamma_sqr = ring.div(&bi_star_norm_sqr, &new_bi_star_norm_sqr);
let new_bi1_star_norm_sqr = ring.mul_ref(&gamma_sqr, &bi1_star_norm_sqr);
let new_mu = ring.mul_ref(&gamma_sqr, &mu);
let lin_transform_muki = [ring.mul_ref(&gamma_sqr, &mu), ring.sub(ring.one(), ring.mul_ref(&gamma_sqr, &mu_sqr))];
let (mut row_i, mut row_i1) = gso.reborrow().restrict_rows(i..(i + 2)).split_rows(0..1, 1..2);
for k in (i + 2)..col_count {
let mu_ki = ring.clone_el(row_i.at(0, k));
std::mem::swap(row_i.at_mut(0, k), row_i1.at_mut(0, k));
ring.sub_assign(row_i1.at_mut(0, k), ring.mul_ref(&mu, row_i.at(0, k)));
ring.mul_assign_ref(row_i.at_mut(0, k), &lin_transform_muki[1]);
ring.add_assign(row_i.at_mut(0, k), ring.mul_ref_fst(&lin_transform_muki[0], mu_ki));
}
*gso.at_mut(i, i) = new_bi_star_norm_sqr;
*gso.at_mut(i, i + 1) = new_mu;
*gso.at_mut(i + 1, i + 1) = new_bi1_star_norm_sqr;
}
fn lll_base<R, I, V, T>(ring: R, int_ring: I, mut gso: SubmatrixMut<V, El<R>>, mut col_ops: T, delta: &El<R>)
where R: RingStore + Copy,
R::Type: LLLRealField<I::Type>,
I: IntegerRingStore + Copy,
I::Type: IntegerRing,
V: AsPointerToSlice<El<R>>,
T: TransformTarget<I::Type>
{
let mut i = 0;
while i + 1 < gso.col_count() {
let (target, matrix) = gso.reborrow().split_cols((i + 1)..(i + 2), 0..(i + 1));
size_reduce(ring, int_ring, target, i + 1, matrix.as_const(), &mut col_ops);
if ring.is_gt(
&ring.mul_ref_snd(
ring.sub_ref_fst(delta, ring.mul_ref(gso.as_const().at(i, i + 1), gso.as_const().at(i, i + 1))),
gso.as_const().at(i, i)
),
gso.as_const().at(i + 1, i + 1)
) {
col_ops.swap(int_ring, i, i + 1);
swap_gso_cols(ring, gso.reborrow(), i, i + 1);
i = max(i, 1) - 1;
} else {
i += 1;
}
}
}
fn ldl<R, V>(ring: R, mut matrix: SubmatrixMut<V, El<R>>)
where R: RingStore,
R::Type: Field,
V: AsPointerToSlice<El<R>>
{
assert_eq!(matrix.row_count(), matrix.col_count());
let n = matrix.row_count();
for i in 0..n {
let pivot = ring.clone_el(matrix.at(i, i));
let pivot_inv = ring.div(&ring.one(), matrix.at(i, i));
for j in (i + 1)..n {
ring.mul_assign_ref(matrix.at_mut(i, j), &pivot_inv);
}
for k in (i + 1)..n {
for l in k..n {
let subtract = ring.mul_ref_snd(ring.mul_ref(matrix.as_const().at(i, k), matrix.as_const().at(i, l)), &pivot);
ring.sub_assign(matrix.at_mut(k, l), subtract);
}
}
}
}
#[stability::unstable(feature = "enable")]
pub fn lll_float<I, V1, V2, A>(ring: I, quadratic_form: Submatrix<V1, El<Real64>>, matrix: SubmatrixMut<V2, El<I>>, delta: f64, allocator: A)
where I: IntegerRingStore,
I::Type: IntegerRing,
V1: AsPointerToSlice<El<Real64>>,
V2: AsPointerToSlice<El<I>>,
A: Allocator
{
assert!(delta < 1.);
assert!(delta > 0.25);
assert_eq!(quadratic_form.row_count(), quadratic_form.col_count());
assert_eq!(matrix.col_count(), quadratic_form.col_count());
let lll_reals = Real64::RING;
let hom = lll_reals.can_hom(&ring).unwrap();
let n = matrix.col_count();
let mut gso: OwnedMatrix<f64, &A> = OwnedMatrix::zero_in(n, n, &lll_reals, &allocator);
let mut tmp: OwnedMatrix<f64, &A> = OwnedMatrix::zero_in(n, n, &lll_reals, &allocator);
let matrix_RR: OwnedMatrix<f64, &A> = OwnedMatrix::from_fn_in(matrix.row_count(), matrix.col_count(), |i, j| hom.map_ref(matrix.at(i, j)), &allocator);
STANDARD_MATMUL.matmul(TransposableSubmatrix::from(matrix_RR.data()).transpose(), TransposableSubmatrix::from(quadratic_form), TransposableSubmatrixMut::from(tmp.data_mut()), lll_reals);
STANDARD_MATMUL.matmul(TransposableSubmatrix::from(tmp.data()), TransposableSubmatrix::from(matrix_RR.data()), TransposableSubmatrixMut::from(gso.data_mut()), lll_reals);
ldl(&lll_reals, gso.data_mut());
lll_base::<_, _, _, TransformLatticeBasis<I::Type, I::Type, _, _>>(&lll_reals, &ring, gso.data_mut(), TransformLatticeBasis { basis: matrix, hom: ring.identity(), int_ring: PhantomData }, &delta);
}
#[stability::unstable(feature = "enable")]
pub fn lll_exact<I, V, A>(ring: I, mut matrix: SubmatrixMut<V, El<I>>, delta: f64, allocator: A)
where I: IntegerRingStore,
I::Type: IntegerRing,
V: AsPointerToSlice<El<I>>,
A: Allocator
{
assert!(delta < 1.);
assert!(delta > 0.25);
lll_float(&ring, OwnedMatrix::<f64>::identity(matrix.col_count(), matrix.col_count(), Real64::RING).data(), matrix.reborrow(), delta, &allocator);
let lll_reals = RationalField::new(BigIntRing::RING);
let delta_int = ring.from_float_approx(delta * 2f64.powi(20)).unwrap();
let delta = lll_reals.div(&lll_reals.get_ring().from_integer(delta_int, ring.get_ring()), &lll_reals.get_ring().from_integer(ring.power_of_two(20), ring.get_ring()));
let n = matrix.col_count();
let mut gso = OwnedMatrix::zero_in(n, n, &lll_reals, &allocator);
let hom = lll_reals.inclusion().compose(BigIntRing::RING.can_hom(&ring).unwrap());
let matrix_RR: OwnedMatrix<_, &A> = OwnedMatrix::from_fn_in(matrix.row_count(), matrix.col_count(), |i, j| hom.map_ref(matrix.at(i, j)), &allocator);
STANDARD_MATMUL.matmul(TransposableSubmatrix::from(matrix_RR.data()).transpose(), TransposableSubmatrix::from(matrix_RR.data()), TransposableSubmatrixMut::from(gso.data_mut()), &lll_reals);
ldl(&lll_reals, gso.data_mut());
lll_base::<_, _, _, TransformLatticeBasis<I::Type, I::Type, _, _>>(&lll_reals, &ring, gso.data_mut(), TransformLatticeBasis { basis: matrix, hom: ring.identity(), int_ring: PhantomData }, &delta);
}
struct TransformLatticeBasis<'a, R, I, V, H>
where R: ?Sized + RingBase,
I: ?Sized + IntegerRing,
H: Homomorphism<I, R>,
V: AsPointerToSlice<R::Element>
{
basis: SubmatrixMut<'a, V, R::Element>,
int_ring: PhantomData<I>,
hom: H
}
impl<'a, R, I, V, H> TransformTarget<I> for TransformLatticeBasis<'a, R, I, V, H>
where R: ?Sized + RingBase,
I: ?Sized + IntegerRing,
H: Homomorphism<I, R>,
V: AsPointerToSlice<R::Element>
{
fn transform<S: Copy + RingStore<Type = I>>(&mut self, ring: S, i: usize, j: usize, transform: &[I::Element; 4]) {
assert!(ring.get_ring() == self.hom.domain().get_ring());
assert!(i != j);
let ring = self.hom.codomain();
for k in 0..self.basis.row_count() {
let a = ring.clone_el(self.basis.at(k, i));
let b = ring.clone_el(self.basis.at(k, j));
*self.basis.at_mut(k, i) = ring.add(self.hom.mul_ref_map(&a, &transform[0]), self.hom.mul_ref_map(&b, &transform[1]));
*self.basis.at_mut(k, i) = ring.add(self.hom.mul_ref_snd_map(a, &transform[2]), self.hom.mul_ref_snd_map(b, &transform[3]));
}
}
fn subtract<S: Copy + RingStore<Type = I>>(&mut self, ring: S, src: usize, dst: usize, factor: &I::Element) {
assert!(ring.get_ring() == self.hom.domain().get_ring());
assert!(src != dst);
let ring = self.hom.codomain();
for k in 0..self.basis.row_count() {
let subtract = self.hom.mul_ref_map(self.basis.at(k, src), factor);
ring.sub_assign(self.basis.at_mut(k, dst), subtract);
}
}
fn swap<S: Copy + RingStore<Type = I>>(&mut self, ring: S, i: usize, j: usize) {
assert!(ring.get_ring() == self.hom.domain().get_ring());
if i == j {
return;
}
let col_count = self.basis.col_count();
let (mut col_i, mut col_j) = self.basis.reborrow().split_cols(i..(i + 1), j..(j + 1));
for k in 0..col_count {
std::mem::swap(col_i.at_mut(k, 0), col_j.at_mut(k, 0));
}
}
}
#[cfg(test)]
use crate::seq::*;
#[cfg(test)]
use test::Bencher;
#[cfg(test)]
use std::alloc::Global;
#[cfg(test)]
use crate::assert_matrix_eq;
#[cfg(test)]
const QQ: RationalField<StaticRing<i64>> = RationalField::new(StaticRing::<i64>::RING);
#[cfg(test)]
macro_rules! in_QQ {
($hom:expr; $num:literal) => {
($hom).map($num)
};
($hom:expr; $num:literal, $den:literal) => {
($hom).codomain().div(&($hom).map($num), &($hom).map($den))
};
($([$($num:literal $(/ $den:literal)?),*]),*) => {
{
let ZZ_to_QQ = QQ.inclusion();
[
$([$(
in_QQ!(ZZ_to_QQ; $num $(, $den)?)
),*]),*
]
}
};
($(DerefArray::from([$($num:literal $(/ $den:literal)?),*])),*) => {
{
let ZZ_to_QQ = QQ.inclusion();
[
$(DerefArray::from([$(
in_QQ!(ZZ_to_QQ; $num $(, $den)?)
),*])),*
]
}
};
}
#[test]
fn test_ldl() {
let mut data = in_QQ![
DerefArray::from([1, 2, 1]),
DerefArray::from([2, 5, 0]),
DerefArray::from([1, 0, 7])
];
let mut matrix = SubmatrixMut::<DerefArray<_, 3>, _>::from_2d(&mut data);
let mut expected = in_QQ![
[1, 2, 1],
[0, 1, -2],
[0, 0, 2]
];
ldl(QQ, matrix.reborrow());
expected[1][0] = *matrix.at(1, 0);
expected[2][0] = *matrix.at(2, 0);
expected[2][1] = *matrix.at(2, 1);
assert_matrix_eq!(&QQ, &expected, &matrix);
}
#[test]
fn test_swap_gso_cols() {
let mut matrix = in_QQ![
DerefArray::from([2, 1/2, 2/5]),
DerefArray::from([0, 3/2, 1/4]),
DerefArray::from([0, 0, 1])
];
let expected = in_QQ![
[2, 1/2, 31/80],
[0, 3/2, 11/40],
[0, 0, 1]
];
let matrix_view = SubmatrixMut::<DerefArray<_, 3>, _>::from_2d(&mut matrix);
swap_gso_cols(&QQ, matrix_view, 0, 1);
assert_matrix_eq!(&QQ, &expected, &matrix);
}
#[cfg(test)]
fn norm_squared<V>(col: &Column<V, i64>) -> i64
where V: AsPointerToSlice<i64>
{
StaticRing::<i64>::RING.sum((0..col.len()).map(|i| col.at(i) * col.at(i)))
}
#[cfg(test)]
fn assert_lattice_isomorphic<V, const N: usize, const M: usize>(lhs: &[DerefArray<i64, M>; N], rhs: &Submatrix<V, i64>)
where V: AsPointerToSlice<i64>
{
use crate::algorithms::linsolve::smith;
assert_eq!(rhs.row_count(), N);
assert_eq!(rhs.col_count(), M);
let ZZbig = BigIntRing::RING;
let mut A: OwnedMatrix<_> = OwnedMatrix::zero(N, M, ZZbig);
let mut B: OwnedMatrix<_> = OwnedMatrix::zero(N, M, ZZbig);
let int_to_ZZbig: CanHom<&RingValue<StaticRingBase<i64>>, &BigIntRing> = ZZbig.can_hom(&StaticRing::<i64>::RING).unwrap();
for i in 0..N {
for j in 0..M {
*A.at_mut(i, j) = int_to_ZZbig.map(lhs[i][j]);
*B.at_mut(i, j) = int_to_ZZbig.map(*rhs.at(i, j));
}
}
let mut U: OwnedMatrix<_> = OwnedMatrix::zero(N, M, ZZbig);
assert!(smith::solve_right_using_pre_smith(&ZZbig, A.clone_matrix(&ZZbig).data_mut(), B.clone_matrix(&ZZbig).data_mut(), U.data_mut(), Global).is_solved());
assert!(smith::solve_right_using_pre_smith(&ZZbig, B.clone_matrix(&ZZbig).data_mut(), A.clone_matrix(&ZZbig).data_mut(), U.data_mut(), Global).is_solved());
}
#[test]
fn test_lll_float_2d() {
let ZZ = StaticRing::<i64>::RING;
let original = [
DerefArray::from([5, 9]),
DerefArray::from([11, 20])
];
let mut reduced = original;
let mut reduced_matrix = SubmatrixMut::<DerefArray<_, 2>, _>::from_2d(&mut reduced);
lll_float(&ZZ, OwnedMatrix::<_>::identity(2, 2, Real64::RING).data(), reduced_matrix.reborrow(), 0.9, Global);
assert_lattice_isomorphic(&original, &reduced_matrix.as_const());
assert_eq!(1, norm_squared(&reduced_matrix.as_const().col_at(0)));
assert_eq!(1, norm_squared(&reduced_matrix.as_const().col_at(1)));
let original = [
DerefArray::from([10, 8]),
DerefArray::from([27, 22])
];
let mut reduced = original;
let mut reduced_matrix = SubmatrixMut::<DerefArray<_, 2>, _>::from_2d(&mut reduced);
lll_float(&ZZ, OwnedMatrix::<_>::identity(2, 2, Real64::RING).data(), reduced_matrix.reborrow(), 0.9, Global);
assert_lattice_isomorphic(&original, &reduced_matrix.as_const());
assert_eq!(4, norm_squared(&reduced_matrix.as_const().col_at(0)));
assert_eq!(5, norm_squared(&reduced_matrix.as_const().col_at(1)));
}
#[test]
fn test_lll_float_3d() {
let ZZ = StaticRing::<i64>::RING;
let original = [
DerefArray::from([72, 0, 0]),
DerefArray::from([0, 9, 0]),
DerefArray::from([8432, 7344, 16864])
];
let _expected = [
[144, 72, 72],
[0, 279, -72],
[0, 0, 272]
];
let mut reduced = original;
let mut reduced_matrix = SubmatrixMut::<DerefArray<_, 3>, _>::from_2d(&mut reduced);
lll_float(&ZZ, OwnedMatrix::<_>::identity(3, 3, Real64::RING).data(), reduced_matrix.reborrow(), 0.999, Global);
assert_lattice_isomorphic(&original, &reduced_matrix.as_const());
assert_eq!(144 * 144, norm_squared(&reduced_matrix.as_const().col_at(0)));
assert_eq!(72 * 72 + 279 * 279, norm_squared(&reduced_matrix.as_const().col_at(1)));
assert_eq!(72 * 72 * 2 + 272 * 272, norm_squared(&reduced_matrix.as_const().col_at(2)));
}
#[bench]
fn bench_lll_float_10d(bencher: &mut Bencher) {
let ZZ = StaticRing::<i64>::RING;
let _expected = [
[ 2, 0, 0, -2, -6, -2, -3, 1, -1, -1],
[ 0, 0, 1, -2, -1, 2, -7, -8, 8, 1],
[ -1, 1, 0, 4, -1, 1, -1, -5, 1, -11],
[ 3, 1, -2, 0, 2, 1, -2, 1, 5, -11],
[ -1, 5, 3, -1, -1, -2, -3, 1, -3, 5],
[ 1, -1, 3, 1, 1, 2, -1, 0, -6, 2],
[ 1, 1, 0, 3, 0, -2, 1, -1, 4, 6],
[ 1, 1, 2, -1, 0, 2, 7, 1, 2, 2],
[ 1, 0, -4, 2, 2, 4, -1, 3, -3, 8],
[ -1, -2, 1, 1, 0, 3, 0, 7, 5, -2]
];
bencher.iter(|| {
let original = [
DerefArray::from([ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]),
DerefArray::from([ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]),
DerefArray::from([ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]),
DerefArray::from([ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]),
DerefArray::from([ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]),
DerefArray::from([ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]),
DerefArray::from([ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]),
DerefArray::from([ 2, 2, 2, 2, 0, 0, 1, 4, 0, 0]),
DerefArray::from([ 4, 3, 3, 3, 1, 2, 1, 0, 5, 0]),
DerefArray::from([ 3433883, 14315221, 24549008, 6570781, 32725387, 33674813, 27390657, 15726308, 43003827, 43364304])
];
let mut reduced = original;
let mut reduced_matrix = SubmatrixMut::<DerefArray<_, 10>, _>::from_2d(&mut reduced);
lll_float(&ZZ, OwnedMatrix::<_>::identity(10, 10, Real64::RING).data(), reduced_matrix.reborrow(), 0.9, Global);
assert_lattice_isomorphic(&original, &reduced_matrix.as_const());
assert!(16 * 16 > norm_squared(&reduced_matrix.as_const().col_at(0)));
});
}
#[test]
fn test_lll_exact_2d() {
let ZZ = StaticRing::<i64>::RING;
let original = [
DerefArray::from([5, 9]),
DerefArray::from([11, 20])
];
let mut reduced = original;
let mut reduced_matrix = SubmatrixMut::<DerefArray<_, 2>, _>::from_2d(&mut reduced);
lll_exact(&ZZ, reduced_matrix.reborrow(), 0.9, Global);
assert_lattice_isomorphic(&original, &reduced_matrix.as_const());
assert_eq!(1, norm_squared(&reduced_matrix.as_const().col_at(0)));
assert_eq!(1, norm_squared(&reduced_matrix.as_const().col_at(1)));
let original = [
DerefArray::from([10, 8]),
DerefArray::from([27, 22])
];
let mut reduced = original;
let mut reduced_matrix = SubmatrixMut::<DerefArray<_, 2>, _>::from_2d(&mut reduced);
lll_exact(&ZZ, reduced_matrix.reborrow(), 0.9, Global);
assert_lattice_isomorphic(&original, &reduced_matrix.as_const());
assert_eq!(4, norm_squared(&reduced_matrix.as_const().col_at(0)));
assert_eq!(5, norm_squared(&reduced_matrix.as_const().col_at(1)));
}
#[test]
fn test_lll_exact_3d() {
let ZZ = StaticRing::<i64>::RING;
let original = [
DerefArray::from([72, 0, 0]),
DerefArray::from([0, 9, 0]),
DerefArray::from([8432, 7344, 16864])
];
let _expected = [
[144, 72, 72],
[0, 279, -72],
[0, 0, 272]
];
let mut reduced = original;
let mut reduced_matrix = SubmatrixMut::<DerefArray<_, 3>, _>::from_2d(&mut reduced);
lll_exact(&ZZ, reduced_matrix.reborrow(), 0.999, Global);
assert_lattice_isomorphic(&original, &reduced_matrix.as_const());
assert_eq!(144 * 144, norm_squared(&reduced_matrix.as_const().col_at(0)));
assert_eq!(72 * 72 + 279 * 279, norm_squared(&reduced_matrix.as_const().col_at(1)));
assert_eq!(72 * 72 * 2 + 272 * 272, norm_squared(&reduced_matrix.as_const().col_at(2)));
}
#[bench]
fn bench_lll_exact_10d(bencher: &mut Bencher) {
let ZZ = StaticRing::<i64>::RING;
let _expected = [
[ 2, 0, 0, -2, -6, -2, -3, 1, -1, -1],
[ 0, 0, 1, -2, -1, 2, -7, -8, 8, 1],
[ -1, 1, 0, 4, -1, 1, -1, -5, 1, -11],
[ 3, 1, -2, 0, 2, 1, -2, 1, 5, -11],
[ -1, 5, 3, -1, -1, -2, -3, 1, -3, 5],
[ 1, -1, 3, 1, 1, 2, -1, 0, -6, 2],
[ 1, 1, 0, 3, 0, -2, 1, -1, 4, 6],
[ 1, 1, 2, -1, 0, 2, 7, 1, 2, 2],
[ 1, 0, -4, 2, 2, 4, -1, 3, -3, 8],
[ -1, -2, 1, 1, 0, 3, 0, 7, 5, -2]
];
bencher.iter(|| {
let original = [
DerefArray::from([ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]),
DerefArray::from([ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]),
DerefArray::from([ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]),
DerefArray::from([ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]),
DerefArray::from([ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]),
DerefArray::from([ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]),
DerefArray::from([ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]),
DerefArray::from([ 2, 2, 2, 2, 0, 0, 1, 4, 0, 0]),
DerefArray::from([ 4, 3, 3, 3, 1, 2, 1, 0, 5, 0]),
DerefArray::from([ 3433883, 14315221, 24549008, 6570781, 32725387, 33674813, 27390657, 15726308, 43003827, 43364304])
];
let mut reduced = original;
let mut reduced_matrix = SubmatrixMut::<DerefArray<_, 10>, _>::from_2d(&mut reduced);
lll_exact(&ZZ, reduced_matrix.reborrow(), 0.9, Global);
assert_lattice_isomorphic(&original, &reduced_matrix.as_const());
assert!(16 * 16 > norm_squared(&reduced_matrix.as_const().col_at(0)));
});
}