feanor_math/algorithms/linsolve/
smith.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
use std::alloc::Allocator;
use std::cmp::min;
use crate::algorithms::linsolve::SolveResult;
use crate::divisibility::*;
use crate::matrix::*;
use crate::matrix::transform::{TransformCols, TransformRows, TransformTarget};
use crate::ring::*;
use crate::pid::PrincipalIdealRing;

///
/// Transforms `A` into `A'` via transformations `L, R` such that
/// `L A R = A'` and `A'` is diagonal.
/// 
/// # (Non-)Uniqueness of the solution
/// 
/// Note that this is not the complete Smith normal form, 
/// as that requires the entries on the diagonal to divide
/// each other. However, computing this pre-smith form is much
/// faster, and can still be used for solving equations (the main
/// use case). However, it is not unique.
/// 
/// # Warning on infinite rings (in particular Z)
/// 
/// For infinite principal ideal rings, this function is correct,
/// but in some situations, the performance can be terrible. The
/// reason is that no care is taken which of the many possible results
/// is returned - and in fact, this algorithm can sometimes choose
/// one that has exponential size in the input. Hence, in these
/// cases it is recommended to use another algorithm, e.g. based on
/// LLL to perform intermediate lattice reductions (not yet implemented
/// in feanor_math).
/// 
#[stability::unstable(feature = "enable")]
pub fn pre_smith<R, TL, TR, V>(ring: R, L: &mut TL, R: &mut TR, mut A: SubmatrixMut<V, El<R>>)
    where R: RingStore + Copy,
        R::Type: PrincipalIdealRing,
        TL: TransformTarget<R::Type>,
        TR: TransformTarget<R::Type>,
        V: AsPointerToSlice<El<R>>
{
    // otherwise we might not terminate...
    assert!(ring.is_noetherian());
    assert!(ring.is_commutative());

    for k in 0..min(A.row_count(), A.col_count()) {
        let mut changed_row = true;
        while changed_row {
            changed_row = false;
            
            // eliminate the column
            for i in (k + 1)..A.row_count() {
                if ring.is_zero(A.at(i, k)) {
                    continue;
                } else if let Some(quo) = ring.checked_div(A.at(i, k), A.at(k, k)) {
                    TransformRows(A.reborrow(), ring.get_ring()).subtract(ring, k, i, &quo);
                    L.subtract(ring, k, i, &quo);
                } else {
                    let (transform, _) = ring.get_ring().create_elimination_matrix(A.at(k, k), A.at(i, k));
                    TransformRows(A.reborrow(), ring.get_ring()).transform(ring, k, i, &transform);
                    L.transform(ring, k, i, &transform);
                }
            }
            
            // now eliminate the row
            for j in (k + 1)..A.col_count() {
                if ring.is_zero(A.at(k, j)) {
                    continue;
                } else if let Some(quo) = ring.checked_div(A.at(k, j), A.at(k, k)) {
                    changed_row = true;
                    TransformCols(A.reborrow(), ring.get_ring()).subtract(ring, k, j, &quo);
                    R.subtract(ring, k, j, &quo);
                } else {
                    changed_row = true;
                    let (transform, _) = ring.get_ring().create_elimination_matrix(A.at(k, k), A.at(k, j));
                    TransformCols(A.reborrow(), ring.get_ring()).transform(ring, k, j, &transform);
                    R.transform(ring, k, j, &transform);
                }
            }
        }
    }
}

#[stability::unstable(feature = "enable")]
pub fn solve_right_using_pre_smith<R, V1, V2, V3, A>(ring: R, mut lhs: SubmatrixMut<V1, El<R>>, mut rhs: SubmatrixMut<V2, El<R>>, mut out: SubmatrixMut<V3, El<R>>, _allocator: A) -> SolveResult
    where R: RingStore + Copy,
        R::Type: PrincipalIdealRing,
        V1: AsPointerToSlice<El<R>>, V2: AsPointerToSlice<El<R>>, V3: AsPointerToSlice<El<R>>,
        A: Allocator
{
    assert_eq!(lhs.row_count(), rhs.row_count());
    assert_eq!(lhs.col_count(), out.row_count());
    assert_eq!(rhs.col_count(), out.col_count());

    let mut R = TransformList::new(lhs.col_count());
    pre_smith(ring, &mut TransformRows(rhs.reborrow(), ring.get_ring()), &mut R, lhs.reborrow());

    for i in out.row_count()..rhs.row_count() {
        for j in 0..rhs.col_count() {
            if !ring.is_zero(rhs.at(i, j)) {
                return SolveResult::NoSolution;
            }
        }
    }
    // the value of out[lhs.row_count().., ..] is irrelevant, since lhs
    // is zero in these places anyway. Thus we just leave it unchanged

    for i in 0..min(lhs.row_count(), lhs.col_count()) {
        let pivot = lhs.at(i, i);
        for j in 0..rhs.col_count() {
            if let Some(quo) = ring.checked_left_div(rhs.at(i, j), pivot) {
                *out.at_mut(i, j) = quo;
            } else {
                return SolveResult::NoSolution;
            }
        }
    }

    R.replay_transposed(ring, TransformRows(out, ring.get_ring()));
    return SolveResult::FoundSomeSolution;
}

#[stability::unstable(feature = "enable")]
pub fn determinant_using_pre_smith<R, V, A>(ring: R, mut matrix: SubmatrixMut<V, El<R>>, _allocator: A) -> El<R>
    where R: RingStore + Copy,
        R::Type: PrincipalIdealRing,
        V:AsPointerToSlice<El<R>>,
        A: Allocator
{
    assert_eq!(matrix.row_count(), matrix.col_count());
    let mut unit_part_rows = ring.one();
    let mut unit_part_cols = ring.one();
    pre_smith(ring, &mut DetUnit { current_unit: &mut unit_part_rows }, &mut DetUnit { current_unit: &mut unit_part_cols }, matrix.reborrow());
    return ring.prod((0..matrix.row_count()).map(|i| ring.clone_el(matrix.at(i, i))).chain([unit_part_rows, unit_part_cols].into_iter()));
}

struct DetUnit<'a, R: ?Sized + RingBase> {
    current_unit: &'a mut R::Element
}

impl<'a, R> TransformTarget<R> for DetUnit<'a, R>
    where R: ?Sized + RingBase
{
    fn subtract<S: Copy + RingStore<Type = R>>(&mut self, _ring: S, _src: usize, _dst: usize, _factor: &<R as RingBase>::Element) {
        // determinant does not change
    }

    fn swap<S: Copy + RingStore<Type = R>>(&mut self, ring: S, _i: usize, _j: usize) {
        ring.negate_inplace(&mut self.current_unit)
    }

    fn transform<S: Copy + RingStore<Type = R>>(&mut self, ring: S, _i: usize, _j: usize, transform: &[<R as RingBase>::Element; 4]) {
        ring.mul_assign(&mut self.current_unit, ring.sub(ring.mul_ref(&transform[0], &transform[3]), ring.mul_ref(&transform[1], &transform[2])));
    }
}

#[cfg(test)]
use crate::primitive_int::StaticRing;
#[cfg(test)]
use crate::rings::extension::extension_impl::FreeAlgebraImpl;
#[cfg(test)]
use crate::rings::extension::galois_field::GaloisField;
#[cfg(test)]
use crate::rings::extension::FreeAlgebraStore;
#[cfg(test)]
use crate::rings::zn::zn_64::Zn;
#[cfg(test)]
use crate::rings::zn::zn_static;
#[cfg(test)]
use crate::assert_matrix_eq;
#[cfg(test)]
use crate::rings::zn::ZnRingStore;
#[cfg(test)]
use crate::seq::VectorView;
#[cfg(test)]
use crate::algorithms::matmul::ComputeInnerProduct;
#[cfg(test)]
use std::alloc::Global;
#[cfg(test)]
use test::Bencher;
use transform::TransformList;
#[cfg(test)]
use crate::homomorphism::Homomorphism;
#[cfg(test)]
use crate::algorithms::linsolve::LinSolveRing;
#[cfg(test)]
use std::ptr::Alignment;
#[cfg(test)]
use std::rc::Rc;
#[cfg(test)]
use std::time::Instant;
#[cfg(test)]
use crate::algorithms::convolution::STANDARD_CONVOLUTION;
#[cfg(test)]
use crate::algorithms::linsolve::extension::solve_right_over_extension;
#[cfg(test)]
use crate::algorithms::matmul::*;

#[cfg(test)]
fn multiply<'a, R: RingStore, V: AsPointerToSlice<El<R>>, I: IntoIterator<Item = Submatrix<'a, V, El<R>>>>(matrices: I, ring: R) -> OwnedMatrix<El<R>>
    where R::Type: 'a,
        V: 'a
{
    let mut it = matrices.into_iter();
    let fst = it.next().unwrap();
    let snd = it.next().unwrap();
    let mut new_result = OwnedMatrix::zero(fst.row_count(), snd.col_count(), &ring);
    STANDARD_MATMUL.matmul(TransposableSubmatrix::from(fst), TransposableSubmatrix::from(snd), TransposableSubmatrixMut::from(new_result.data_mut()), &ring);
    let mut result = new_result;

    for m in it {
        let mut new_result = OwnedMatrix::zero(result.row_count(), m.col_count(), &ring);
        STANDARD_MATMUL.matmul(TransposableSubmatrix::from(result.data()), TransposableSubmatrix::from(m), TransposableSubmatrixMut::from(new_result.data_mut()), &ring);
        result = new_result;
    }
    return result;
}

#[test]
fn test_smith_integers() {
    let ring = StaticRing::<i64>::RING;
    let mut A = OwnedMatrix::new(
        vec![ 1, 2, 3, 4, 
                    2, 3, 4, 5,
                    3, 4, 5, 6 ], 
        4
    );
    let original_A = A.clone_matrix(&ring);
    let mut L: OwnedMatrix<i64> = OwnedMatrix::identity(3, 3, StaticRing::<i64>::RING);
    let mut R: OwnedMatrix<i64> = OwnedMatrix::identity(4, 4, StaticRing::<i64>::RING);
    pre_smith(ring, &mut TransformRows(L.data_mut(), ring.get_ring()), &mut TransformCols(R.data_mut(), ring.get_ring()), A.data_mut());
    
    assert_matrix_eq!(&ring, &[
        [1, 0, 0, 0],
        [0,-1, 0, 0],
        [0, 0, 0, 0]], &A);

    assert_matrix_eq!(&ring, &multiply([L.data(), original_A.data(), R.data()], ring), &A);
}

#[test]
fn test_smith_zn() {
    let ring = zn_static::Zn::<45>::RING;
    let mut A = OwnedMatrix::new(
        vec![ 8, 3, 5, 8,
                    0, 9, 0, 9,
                    5, 9, 5, 14,
                    8, 3, 5, 23,
                    3,39, 0, 39 ],
        4
    );
    let original_A = A.clone_matrix(&ring);
    let mut L: OwnedMatrix<u64> = OwnedMatrix::identity(5, 5, ring);
    let mut R: OwnedMatrix<u64> = OwnedMatrix::identity(4, 4, ring);
    pre_smith(ring, &mut TransformRows(L.data_mut(), ring.get_ring()), &mut TransformCols(R.data_mut(), ring.get_ring()), A.data_mut());

    assert_matrix_eq!(&ring, &[
        [8, 0, 0, 0],
        [0, 3, 0, 0],
        [0, 0, 0, 0], 
        [0, 0, 0, 15],
        [0, 0, 0, 0]], &A);
        
    assert_matrix_eq!(&ring, &multiply([L.data(), original_A.data(), R.data()], ring), &A);
}

#[test]
fn test_solve_zn() {
    let ring = zn_static::Zn::<45>::RING;
    let A = OwnedMatrix::new(
        vec![ 8, 3, 5, 8,
                    0, 9, 0, 9,
                    5, 9, 5, 14,
                    8, 3, 5, 23,
                    3,39, 0, 39 ],
        4
    );
    let B = OwnedMatrix::new(
        vec![11, 43, 10, 22,
                   18,  9, 27, 27,
                    8, 34,  7, 22,
                   41, 13, 40, 37,
                    3,  9,  3,  0],
        4
    );
    let mut solution: OwnedMatrix<_> = OwnedMatrix::zero(4, 4, ring);
    ring.get_ring().solve_right(A.clone_matrix(ring).data_mut(), B.clone_matrix(ring).data_mut(), solution.data_mut(), Global).assert_solved();

    assert_matrix_eq!(&ring, &multiply([A.data(), solution.data()], ring), &B);
}

#[test]
fn test_solve_int() {
    let ring = StaticRing::<i64>::RING;
    let A = OwnedMatrix::new(
        vec![3, 6, 2, 0, 4, 7,
                   5, 5, 4, 5, 5, 5],
        6
    );
    let B: OwnedMatrix<i64> = OwnedMatrix::identity(2, 2, ring);
    let mut solution: OwnedMatrix<i64> = OwnedMatrix::zero(6, 2, ring);
    ring.get_ring().solve_right(A.clone_matrix(ring).data_mut(), B.clone_matrix(ring).data_mut(), solution.data_mut(), Global).assert_solved();

    assert_matrix_eq!(&ring, &multiply([A.data(), solution.data()], &ring), &B);
}

#[test]
fn test_large() {
    let ring = zn_static::Zn::<16>::RING;
    let data_A = [
        [0, 0, 0, 0, 0, 0, 0, 0,11, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0,10],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
    ];
    let mut A: OwnedMatrix<u64> = OwnedMatrix::zero(6, 11, &ring);
    for i in 0..6 {
        for j in 0..11 {
            *A.at_mut(i, j) = data_A[i][j];
        }
    }
    let mut solution: OwnedMatrix<_> = OwnedMatrix::zero(11, 11, ring);
    assert!(ring.get_ring().solve_right(A.clone_matrix(&ring).data_mut(), A.data_mut(), solution.data_mut(), Global).is_solved());
}

#[test]
fn test_determinant() {
    let ring = StaticRing::<i64>::RING;
    let A = OwnedMatrix::new(
        vec![1, 0, 3, 
                   2, 1, 0, 
                   9, 8, 7],
        3
    );
    assert_el_eq!(ring, (7 + 48 - 27), determinant_using_pre_smith(ring, A.clone_matrix(&ring).data_mut(), Global));
}

#[test]
#[ignore]
fn time_solve_right_using_pre_smith_galois_field() {
    let n = 100;
    let base_field = Zn::new(257).as_field().ok().unwrap();
    let allocator = feanor_mempool::AllocRc(Rc::new(feanor_mempool::dynsize::DynLayoutMempool::new_global(Alignment::of::<u64>())));
    let field = GaloisField::new_with(base_field, 21, allocator, STANDARD_CONVOLUTION);
    let matrix = OwnedMatrix::from_fn(n, n, |i, j| field.pow(field.int_hom().mul_map(field.canonical_gen(), i as i32 + 1), j));
    
    let mut inv = OwnedMatrix::zero(n, n, &field);
    let mut copy = matrix.clone_matrix(&field);
    let start = Instant::now();
    solve_right_using_pre_smith(&field, copy.data_mut(), OwnedMatrix::identity(n, n, &field).data_mut(), inv.data_mut(), Global).assert_solved();
    let end = Instant::now();
    assert_el_eq!(&field, field.one(), <_ as ComputeInnerProduct>::inner_product_ref(field.get_ring(), inv.data().col_at(4).as_iter().zip(matrix.data().row_at(4).as_iter())));
    
    println!("total: {} us", (end - start).as_micros());
}

#[test]
#[ignore]
fn time_solve_right_using_extension() {
    let n = 126;
    let base_field = Zn::new(257).as_field().ok().unwrap();
    let allocator = feanor_mempool::AllocRc(Rc::new(feanor_mempool::dynsize::DynLayoutMempool::new_global(Alignment::of::<u64>())));
    let field = GaloisField::new_with(base_field, 21, allocator, STANDARD_CONVOLUTION);
    let matrix = OwnedMatrix::from_fn(n, n, |i, j| field.pow(field.int_hom().mul_map(field.canonical_gen(), i as i32 + 1), j));
    
    let mut inv = OwnedMatrix::zero(n, n, &field);
    let mut copy = matrix.clone_matrix(&field);
    let start = Instant::now();
    solve_right_over_extension(&field, copy.data_mut(), OwnedMatrix::identity(n, n, &field).data_mut(), inv.data_mut(), Global).assert_solved();
    let end = Instant::now();
    assert_el_eq!(&field, field.one(), <_ as ComputeInnerProduct>::inner_product_ref(field.get_ring(), inv.data().col_at(4).as_iter().zip(matrix.data().row_at(4).as_iter())));

    println!("total: {} us", (end - start).as_micros());
}

#[bench]
fn bench_solve_right_using_pre_smith_galois_field(bencher: &mut Bencher) {
    let base_field = Zn::new(257).as_field().ok().unwrap();
    let allocator = feanor_mempool::AllocRc(Rc::new(feanor_mempool::dynsize::DynLayoutMempool::new_global(Alignment::of::<u64>())));
    let field = GaloisField::create(FreeAlgebraImpl::new_with(base_field, 5, [base_field.int_hom().map(3), base_field.int_hom().map(-4)], "x", allocator, STANDARD_CONVOLUTION).as_field().ok().unwrap());
    let matrix = OwnedMatrix::from_fn(10, 10, |i, j| field.pow(field.int_hom().mul_map(field.canonical_gen(), i as i32 + 1), j));
    bencher.iter(|| {
        let mut inv = OwnedMatrix::zero(10, 10, &field);
        let mut copy = matrix.clone_matrix(&field);
        solve_right_using_pre_smith(&field, copy.data_mut(), OwnedMatrix::identity(10, 10, &field).data_mut(), inv.data_mut(), Global).assert_solved();
        assert_el_eq!(&field, field.one(), <_ as ComputeInnerProduct>::inner_product_ref(field.get_ring(), inv.data().col_at(4).as_iter().zip(matrix.data().row_at(4).as_iter())));
    });
}