1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
use std::f64::EPSILON;

use crate::ordered::OrderedRing;
use crate::pid::{EuclideanRing, PrincipalIdealRing};
use crate::field::Field;
use crate::integer::{int_cast, IntegerRing, IntegerRingStore};
use crate::primitive_int::StaticRing;
use crate::{impl_eq_based_self_iso, ring::*};
use crate::homomorphism::*;
use crate::divisibility::{DivisibilityRing, Domain};

use super::rational::{RationalField, RationalFieldBase};

///
/// An approximate implementation of the real numbers `R`, using 64 bit floating
/// point numbers.
/// 
/// # Warning
/// 
/// Since floating point numbers do not exactly represent the real numbers, and this crate follows
/// a mathematically precise approach, we cannot provide any function related to equality.
/// In particular, `Real64Base.eq_el(a, b)` is not supported, and will panic. 
/// Hence, this ring has only limited use within this crate, and is currently only used for
/// floating-point FFTs. 
/// 
#[derive(Clone, Copy, PartialEq)]
pub struct Real64Base;

///
/// [`RingStore`] corresponding to [`Real64Base`]
/// 
pub type Real64 = RingValue<Real64Base>;

impl Real64 {

    pub const RING: RingValue<Real64Base> = RingValue::from(Real64Base);
}

impl Real64Base {

    pub fn is_absolute_approx_eq(&self, lhs: <Self as RingBase>::Element, rhs: <Self as RingBase>::Element, absolute_threshold: f64) -> bool {
        (lhs - rhs).abs() < absolute_threshold
    }

    pub fn is_relative_approx_eq(&self, lhs: <Self as RingBase>::Element, rhs: <Self as RingBase>::Element, relative_threshold: f64) -> bool {
        self.is_absolute_approx_eq(lhs, rhs, (lhs.abs() + rhs.abs()) * relative_threshold)
    }

    pub fn is_approx_eq(&self, lhs: <Self as RingBase>::Element, rhs: <Self as RingBase>::Element, precision: u64) -> bool {
        let scaled_precision = precision as f64 * EPSILON;
        if self.is_absolute_approx_eq(lhs, self.zero(), scaled_precision) {
            self.is_absolute_approx_eq(rhs, self.zero(), scaled_precision)
        } else {
            self.is_relative_approx_eq(lhs, rhs, scaled_precision)
        }
    }
}

impl RingBase for Real64Base {
 
    type Element = f64;
    
    fn clone_el(&self, val: &Self::Element) -> Self::Element {
        *val
    }

    fn add_assign(&self, lhs: &mut Self::Element, rhs: Self::Element) {
        *lhs += rhs;
    }

    fn negate_inplace(&self, x: &mut Self::Element) {
        *x = -*x;
    }

    fn mul_assign(&self, lhs: &mut Self::Element, rhs: Self::Element) {
        *lhs *= rhs;
    }

    fn from_int(&self, value: i32) -> Self::Element {
        value as f64
    }
    
    fn eq_el(&self, _: &Self::Element, _: &Self::Element) -> bool {
        panic!("Cannot provide equality on approximate rings")
    }

    fn pow_gen<R: IntegerRingStore>(&self, x: Self::Element, power: &El<R>, integers: R) -> Self::Element 
        where R::Type: IntegerRing
    {
        if integers.get_ring().representable_bits().is_some() && integers.get_ring().representable_bits().unwrap() < i32::BITS as usize {
            x.powi(int_cast(integers.clone_el(power), &StaticRing::<i32>::RING, integers))
        } else {
            x.powf(integers.to_float_approx(power))
        }
    }

    fn is_commutative(&self) -> bool { true }

    fn is_noetherian(&self) -> bool { true }

    fn is_approximate(&self) -> bool { true }

    fn dbg<'a>(&self, x: &Self::Element, out: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
        write!(out, "{}", x)
    }
    
    fn characteristic<I: IntegerRingStore>(&self, ZZ: &I) -> Option<El<I>>
        where I::Type: IntegerRing
    {
        Some(ZZ.zero())
    }
}

impl_eq_based_self_iso!{ Real64Base }

impl Domain for Real64Base {}

impl DivisibilityRing for Real64Base {

    fn checked_left_div(&self, lhs: &Self::Element, rhs: &Self::Element) -> Option<Self::Element> {
        assert!(*rhs != 0.);
        return Some(*lhs / *rhs);
    }
}

impl PrincipalIdealRing for Real64Base {

    fn extended_ideal_gen(&self, _lhs: &Self::Element, _rhs: &Self::Element) -> (Self::Element, Self::Element, Self::Element) {
        panic!("Since Complex64 is only approximate, this cannot be implemented properly")
    }
}

impl EuclideanRing for Real64Base {

    fn euclidean_div_rem(&self, _lhs: Self::Element, _rhs: &Self::Element) -> (Self::Element, Self::Element) {
        panic!("Since Complex64 is only approximate, this cannot be implemented properly")
    }

    fn euclidean_deg(&self, _: &Self::Element) -> Option<usize> {
        panic!("Since Complex64 is only approximate, this cannot be implemented properly")
    }
}

impl Field for Real64Base {

    fn div(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element {
        self.checked_left_div(lhs, rhs).unwrap()
    }
}

impl OrderedRing for Real64Base {

    fn cmp(&self, lhs: &Self::Element, rhs: &Self::Element) -> std::cmp::Ordering {
        f64::partial_cmp(lhs, rhs).unwrap()
    }
}

impl<I> CanHomFrom<I> for Real64Base 
    where I: ?Sized + IntegerRing
{
    type Homomorphism = ();

    fn has_canonical_hom(&self, _from: &I) -> Option<Self::Homomorphism> {
        Some(())
    }

    fn map_in(&self, from: &I, el: <I as RingBase>::Element, _hom: &Self::Homomorphism) -> Self::Element {
        from.to_float_approx(&el)
    }

    fn map_in_ref(&self, from: &I, el: &<I as RingBase>::Element, _hom: &Self::Homomorphism) -> Self::Element {
        from.to_float_approx(el)
    }
}

impl<I> CanHomFrom<RationalFieldBase<I>> for Real64Base 
    where I: IntegerRingStore,
        I::Type: IntegerRing
{
    type Homomorphism = ();

    fn has_canonical_hom(&self, _from: &RationalFieldBase<I>) -> Option<Self::Homomorphism> {
        Some(())
    }

    fn map_in(&self, from: &RationalFieldBase<I>, el: El<RationalField<I>>, hom: &Self::Homomorphism) -> Self::Element {
        self.map_in_ref(from, &el, hom)
    }

    fn map_in_ref(&self, from: &RationalFieldBase<I>, el: &El<RationalField<I>>, _hom: &Self::Homomorphism) -> Self::Element {
        from.base_ring().to_float_approx(&el.0) / from.base_ring().to_float_approx(&el.1)
    }
}