use std::f64::EPSILON;
use crate::ordered::OrderedRing;
use crate::pid::{EuclideanRing, PrincipalIdealRing};
use crate::field::Field;
use crate::integer::{int_cast, IntegerRing, IntegerRingStore};
use crate::primitive_int::StaticRing;
use crate::{impl_eq_based_self_iso, ring::*};
use crate::homomorphism::*;
use crate::divisibility::{DivisibilityRing, Domain};
use super::rational::{RationalField, RationalFieldBase};
#[derive(Clone, Copy, PartialEq)]
pub struct Real64Base;
pub type Real64 = RingValue<Real64Base>;
impl Real64 {
pub const RING: RingValue<Real64Base> = RingValue::from(Real64Base);
}
impl Real64Base {
pub fn is_absolute_approx_eq(&self, lhs: <Self as RingBase>::Element, rhs: <Self as RingBase>::Element, absolute_threshold: f64) -> bool {
(lhs - rhs).abs() < absolute_threshold
}
pub fn is_relative_approx_eq(&self, lhs: <Self as RingBase>::Element, rhs: <Self as RingBase>::Element, relative_threshold: f64) -> bool {
self.is_absolute_approx_eq(lhs, rhs, (lhs.abs() + rhs.abs()) * relative_threshold)
}
pub fn is_approx_eq(&self, lhs: <Self as RingBase>::Element, rhs: <Self as RingBase>::Element, precision: u64) -> bool {
let scaled_precision = precision as f64 * EPSILON;
if self.is_absolute_approx_eq(lhs, self.zero(), scaled_precision) {
self.is_absolute_approx_eq(rhs, self.zero(), scaled_precision)
} else {
self.is_relative_approx_eq(lhs, rhs, scaled_precision)
}
}
}
impl RingBase for Real64Base {
type Element = f64;
fn clone_el(&self, val: &Self::Element) -> Self::Element {
*val
}
fn add_assign(&self, lhs: &mut Self::Element, rhs: Self::Element) {
*lhs += rhs;
}
fn negate_inplace(&self, x: &mut Self::Element) {
*x = -*x;
}
fn mul_assign(&self, lhs: &mut Self::Element, rhs: Self::Element) {
*lhs *= rhs;
}
fn from_int(&self, value: i32) -> Self::Element {
value as f64
}
fn eq_el(&self, _: &Self::Element, _: &Self::Element) -> bool {
panic!("Cannot provide equality on approximate rings")
}
fn pow_gen<R: IntegerRingStore>(&self, x: Self::Element, power: &El<R>, integers: R) -> Self::Element
where R::Type: IntegerRing
{
if integers.get_ring().representable_bits().is_some() && integers.get_ring().representable_bits().unwrap() < i32::BITS as usize {
x.powi(int_cast(integers.clone_el(power), &StaticRing::<i32>::RING, integers))
} else {
x.powf(integers.to_float_approx(power))
}
}
fn is_commutative(&self) -> bool { true }
fn is_noetherian(&self) -> bool { true }
fn is_approximate(&self) -> bool { true }
fn dbg<'a>(&self, x: &Self::Element, out: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
write!(out, "{}", x)
}
fn characteristic<I: IntegerRingStore>(&self, ZZ: &I) -> Option<El<I>>
where I::Type: IntegerRing
{
Some(ZZ.zero())
}
}
impl_eq_based_self_iso!{ Real64Base }
impl Domain for Real64Base {}
impl DivisibilityRing for Real64Base {
fn checked_left_div(&self, lhs: &Self::Element, rhs: &Self::Element) -> Option<Self::Element> {
assert!(*rhs != 0.);
return Some(*lhs / *rhs);
}
}
impl PrincipalIdealRing for Real64Base {
fn extended_ideal_gen(&self, _lhs: &Self::Element, _rhs: &Self::Element) -> (Self::Element, Self::Element, Self::Element) {
panic!("Since Complex64 is only approximate, this cannot be implemented properly")
}
}
impl EuclideanRing for Real64Base {
fn euclidean_div_rem(&self, _lhs: Self::Element, _rhs: &Self::Element) -> (Self::Element, Self::Element) {
panic!("Since Complex64 is only approximate, this cannot be implemented properly")
}
fn euclidean_deg(&self, _: &Self::Element) -> Option<usize> {
panic!("Since Complex64 is only approximate, this cannot be implemented properly")
}
}
impl Field for Real64Base {
fn div(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element {
self.checked_left_div(lhs, rhs).unwrap()
}
}
impl OrderedRing for Real64Base {
fn cmp(&self, lhs: &Self::Element, rhs: &Self::Element) -> std::cmp::Ordering {
f64::partial_cmp(lhs, rhs).unwrap()
}
}
impl<I> CanHomFrom<I> for Real64Base
where I: ?Sized + IntegerRing
{
type Homomorphism = ();
fn has_canonical_hom(&self, _from: &I) -> Option<Self::Homomorphism> {
Some(())
}
fn map_in(&self, from: &I, el: <I as RingBase>::Element, _hom: &Self::Homomorphism) -> Self::Element {
from.to_float_approx(&el)
}
fn map_in_ref(&self, from: &I, el: &<I as RingBase>::Element, _hom: &Self::Homomorphism) -> Self::Element {
from.to_float_approx(el)
}
}
impl<I> CanHomFrom<RationalFieldBase<I>> for Real64Base
where I: IntegerRingStore,
I::Type: IntegerRing
{
type Homomorphism = ();
fn has_canonical_hom(&self, _from: &RationalFieldBase<I>) -> Option<Self::Homomorphism> {
Some(())
}
fn map_in(&self, from: &RationalFieldBase<I>, el: El<RationalField<I>>, hom: &Self::Homomorphism) -> Self::Element {
self.map_in_ref(from, &el, hom)
}
fn map_in_ref(&self, from: &RationalFieldBase<I>, el: &El<RationalField<I>>, _hom: &Self::Homomorphism) -> Self::Element {
from.base_ring().to_float_approx(&el.0) / from.base_ring().to_float_approx(&el.1)
}
}