1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
use crate::{matrix::dense::DenseMatrix, ring::*};
use crate::vector::vec_fn::*;
use crate::homomorphism::*;
use super::poly::{PolyRingStore, PolyRing};

///
/// Contains [`extension_impl::FreeAlgebraImpl`], an implementation of [`FreeAlgebra`] based
/// on polynomial division.
/// 
pub mod extension_impl;

pub mod galois_field;

///
/// A ring `R` that is an extension of a base ring `S`, generated by a single element
/// that is algebraic resp. integral over `S`. While sounding quite technical, this includes
/// a wide class of important rings, like number fields or galois fields.
/// 
/// We also require that `R` must be a free `S`-module, with a basis given by the powers 
/// of [`FreeAlgebra::canonical_gen()`].
/// 
/// # Nontrivial Automorphisms
/// 
/// Rings of this form very often have nontrivial automorphisms. In order to simplify situations
/// where morphisms or other objects are only unique up to isomorphism, canonical morphisms between rings
/// of this type must also preserve the canonical generator. 
/// 
/// # Examples
/// One of the most common use cases seems to be the implementation of finite fields (sometimes
/// called galois fields).
/// ```
/// # use feanor_math::{assert_el_eq, default_memory_provider};
/// # use feanor_math::ring::*;
/// # use feanor_math::rings::zn::*;
/// # use feanor_math::primitive_int::*;
/// # use feanor_math::rings::extension::*;
/// # use feanor_math::divisibility::*;
/// # use feanor_math::rings::finite::*;
/// // we have to decide for an implementation of the prime field
/// let prime_field = zn_static::Fp::<3>::RING;
/// let galois_field = extension_impl::FreeAlgebraImpl::new(prime_field, [2, 1, 0], default_memory_provider!());
/// // this is now the finite field with 27 elements, or F_27 or GF(27) since X^3 + 2X + 1 is irreducible modulo 3
/// 
/// assert_eq!(Some(27), galois_field.size(&StaticRing::<i64>::RING));
/// 
/// // currently, this ring unfortunately does not implement `Field`; However, we can already do division
/// for x in galois_field.elements() {
///     if !galois_field.is_zero(&x) {
///         galois_field.println(&x);
///         let inv_x = galois_field.checked_div(&galois_field.one(), &x).unwrap();
///         assert_el_eq!(&galois_field, &galois_field.one(), &galois_field.mul(x, inv_x));
///     }
/// }
/// ```
/// 
pub trait FreeAlgebra: RingExtension {

    type VectorRepresentation<'a>: VectorFn<El<Self::BaseRing>>
        where Self: 'a;

    fn canonical_gen(&self) -> Self::Element;
    fn rank(&self) -> usize;
    fn wrt_canonical_basis<'a>(&'a self, el: &'a Self::Element) -> Self::VectorRepresentation<'a>;

    fn from_canonical_basis<V>(&self, vec: V) -> Self::Element
        where V: ExactSizeIterator + DoubleEndedIterator + Iterator<Item = El<Self::BaseRing>>
    {
        assert_eq!(vec.len(), self.rank());
        let x = self.canonical_gen();
        let mut result = self.zero();
        for c in vec.rev() {
            self.mul_assign_ref(&mut result, &x);
            self.add_assign(&mut result, self.from(c));
        }
        return result;
    }
}

pub trait FreeAlgebraStore: RingStore
    where Self::Type: FreeAlgebra
{
    delegate!{ FreeAlgebra, fn canonical_gen(&self) -> El<Self> }
    delegate!{ FreeAlgebra, fn rank(&self) -> usize }

    fn wrt_canonical_basis<'a>(&'a self, el: &'a El<Self>) -> <Self::Type as FreeAlgebra>::VectorRepresentation<'a> {
        self.get_ring().wrt_canonical_basis(el)
    }

    fn from_canonical_basis<V>(&self, vec: V) -> El<Self>
        where V: ExactSizeIterator + DoubleEndedIterator + Iterator<Item = El<<Self::Type as RingExtension>::BaseRing>>
    {
        self.get_ring().from_canonical_basis(vec)
    }

    fn generating_poly<P, H>(&self, poly_ring: P, hom: H) -> El<P>
        where P: PolyRingStore,
            P::Type: PolyRing,
            H: Homomorphism<<<Self::Type as RingExtension>::BaseRing as RingStore>::Type, <<P::Type as RingExtension>::BaseRing as RingStore>::Type>
    {
        poly_ring.sub(
            poly_ring.from_terms([(poly_ring.base_ring().one(), self.rank())].into_iter()),
            self.poly_repr(&poly_ring, &self.pow(self.canonical_gen(), self.rank()), hom)
        )
    }

    fn poly_repr<P, H>(&self, to: P, el: &El<Self>, hom: H) -> El<P>
        where P: PolyRingStore,
            P::Type: PolyRing, 
            H: Homomorphism<<<Self::Type as RingExtension>::BaseRing as RingStore>::Type, <<P::Type as RingExtension>::BaseRing as RingStore>::Type>
    {
        let coeff_vec = self.wrt_canonical_basis(el);
        to.from_terms(
            (0..self.rank()).map(|i| coeff_vec.at(i)).enumerate()
                .filter(|(_, x)| !self.base_ring().is_zero(x))
                .map(|(j, x)| (hom.map(x), j))
        )

    }
    fn create_multiplication_matrix(&self, el: &El<Self>) -> DenseMatrix<<<Self::Type as RingExtension>::BaseRing as RingStore>::Type> {
        let mut result = DenseMatrix::zero(self.rank(), self.rank(), self.base_ring());
        let mut current = self.clone_el(el);
        let gen = self.canonical_gen();
        for i in 0..self.rank() {
            {
                let current_basis_repr = self.wrt_canonical_basis(&current);
                for j in 0..self.rank() {
                    *result.at_mut(j, i) = current_basis_repr.at(j);
                }
            }
            self.mul_assign_ref(&mut current, &gen);
        }
        return result;
    }
}

impl<R: RingStore> FreeAlgebraStore for R
    where R::Type: FreeAlgebra
{}

#[cfg(any(test, feature = "generic_tests"))]
pub fn generic_test_free_algebra_axioms<R: FreeAlgebraStore>(ring: R)
    where R::Type: FreeAlgebra
{
    let x = ring.canonical_gen();
    let n = ring.rank();
    
    let xn_original = ring.pow(ring.clone_el(&x), n);
    let xn_vec = ring.wrt_canonical_basis(&xn_original);
    let xn = ring.sum(Iterator::map(0..n, |i| ring.mul(ring.inclusion().map(xn_vec.at(i)), ring.pow(ring.clone_el(&x), i))));
    assert_el_eq!(&ring, &xn_original, &xn);

    let x_n_1_vec_expected = (0..n).into_fn().map(|i| if i > 0 {
        ring.base_ring().add(ring.base_ring().mul(xn_vec.at(n - 1), xn_vec.at(i)), xn_vec.at(i - 1))
    } else {
        ring.base_ring().mul(xn_vec.at(n - 1), xn_vec.at(0))
    });
    let x_n_1 = ring.pow(ring.clone_el(&x), n + 1);
    let x_n_1_vec_actual = ring.wrt_canonical_basis(&x_n_1);
    for i in 0..n {
        assert_el_eq!(ring.base_ring(), &x_n_1_vec_expected.at(i), &x_n_1_vec_actual.at(i));
    }

    // test basis wrt_root_of_unity_basis linearity and compatibility from_root_of_unity_basis/wrt_root_of_unity_basis
    for i in (0..ring.rank()).step_by(5) {
        for j in (1..ring.rank()).step_by(7) {
            if i == j {
                continue;
            }
            let element = ring.from_canonical_basis(Iterator::map(0..n, |k| if k == i { ring.base_ring().one() } else if k == j { ring.base_ring().int_hom().map(2) } else { ring.base_ring().zero() }));
            let expected = ring.add(ring.pow(ring.clone_el(&x), i), ring.int_hom().mul_map(ring.pow(ring.clone_el(&x), j), 2));
            assert_el_eq!(&ring, &expected, &element);
            let element_vec = ring.wrt_canonical_basis(&expected);
            for k in 0..ring.rank() {
                if k == i {
                    assert_el_eq!(ring.base_ring(), &ring.base_ring().one(), &element_vec.at(k));
                } else if k == j {
                    assert_el_eq!(ring.base_ring(), &ring.base_ring().int_hom().map(2), &element_vec.at(k));
                } else {
                    assert_el_eq!(ring.base_ring(), &ring.base_ring().zero(), &element_vec.at(k));
                }
            }
        }
    }
}