1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
use std::marker::PhantomData;

use crate::ring::*;
use crate::primitive_int::{StaticRingBase, StaticRing};

///
/// The user-facing trait for ring homomorphisms, i.e. maps `R -> S`
/// between rings that respect the ring structure.
/// 
/// Objects are expected to know their domain and codomain rings and
/// can thus make sense without an implicit ambient ring (unlike e.g.
/// ring elements).
/// 
/// Ring homomorphisms are usually obtained by a corresponding method
/// on [`RingStore`], and their functionality is provided by underlying
/// functions of [`RingBase`]. Main examples include
///  - Every ring `R` has a homomorphism `Z -> R`. The corresponding
///    [`Homomorphism`]-object is obtained with [`RingStore::int_hom()`],
///    and the functionality provided by [`RingBase::from_int()`].
///  - [`RingExtension`]s have give a (injective) homomorphism `R -> S`
///    which can be obtained by [`RingExtensionStore::inclusion()`].
///    The functionality is provided by functions on [`RingExtension`],
///    like [`RingExtension::from()`].
///  - Other "natural" homomorphisms can be obtained via [`RingStore::can_hom()`].
///    This requires the underlying [`RingBase`]s to implement [`CanHomFrom`],
///    and the functions of that trait define the homomorphism.
///  
pub trait Homomorphism<Domain: ?Sized, Codomain: ?Sized> 
    where Domain: RingBase, Codomain: RingBase
{
    type DomainStore: RingStore<Type = Domain>;
    type CodomainStore: RingStore<Type = Codomain>;

    fn domain<'a>(&'a self) -> &'a Self::DomainStore;
    fn codomain<'a>(&'a self) -> &'a Self::CodomainStore;

    fn map(&self, x: Domain::Element) -> Codomain::Element;

    fn map_ref(&self, x: &Domain::Element) -> Codomain::Element {
        self.map(self.domain().clone_el(x))
    }

    fn mul_assign_map(&self, lhs: &mut Codomain::Element, rhs: Domain::Element) {
        self.codomain().mul_assign(lhs, self.map(rhs))
    }

    fn mul_assign_map_ref(&self, lhs: &mut Codomain::Element, rhs: &Domain::Element) {
        self.codomain().mul_assign(lhs, self.map_ref(rhs))
    }

    fn mul_map(&self, mut lhs: Codomain::Element, rhs: Domain::Element) -> Codomain::Element {
        self.mul_assign_map(&mut lhs, rhs);
        lhs
    }

    fn mul_ref_fst_map(&self, lhs: &Codomain::Element, rhs: Domain::Element) -> Codomain::Element {
        self.mul_map(self.codomain().clone_el(lhs), rhs)
    }

    fn mul_ref_snd_map(&self, mut lhs: Codomain::Element, rhs: &Domain::Element) -> Codomain::Element {
        self.mul_assign_map_ref(&mut lhs, rhs);
        lhs
    }

    fn mul_ref_map(&self, lhs: &Codomain::Element, rhs: &Domain::Element) -> Codomain::Element {
        self.mul_ref_snd_map(self.codomain().clone_el(lhs), rhs)
    }

    fn compose<F, PrevDomain: ?Sized + RingBase>(self, prev: F) -> ComposedHom<PrevDomain, Domain, Codomain, F, Self>
        where Self: Sized, F: Homomorphism<PrevDomain, Domain>
    {
        assert!(prev.codomain().get_ring() == self.domain().get_ring());
        ComposedHom { f: prev, g: self, domain: PhantomData, intermediate: PhantomData, codomain: PhantomData }
    }
}

///
/// Trait for rings R that have a canonical homomorphism `S -> R`.
/// A ring homomorphism is expected to be unital. 
/// 
/// This trait is
/// considered implementor-facing, so it is designed to easily implement
/// natural maps between rings. When using homomorphisms, consider
/// using instead [`CanHom`], as it does not require weird syntax like
/// `R.get_ring().map_in(S.get_ring(), x, &hom)`.
/// 
/// # Exact requirements
/// 
/// Which homomorphisms are considered canonical is up to implementors,
/// as long as any diagram of canonical homomorphisms commutes. In
/// other words, if there are rings `R, S` and "intermediate rings"
/// `R1, ..., Rn` resp. `R1', ..., Rm'` such that there are canonical
/// homomorphisms
/// ```text
/// S -> R1 -> R2 -> ... -> Rn -> R
/// ```
/// and
/// ```text
/// S -> R1' -> R2' -> ... -> Rm' -> R
/// ```
/// then both homomorphism chains should yield same results on same
/// inputs.
/// 
/// If the canonical homomorphism might be an isomorphism, consider also
/// implementing [`CanIsoFromTo`].
/// 
/// # Example
/// 
/// Most integer rings support canonical homomorphisms between them.
/// ```
/// # use feanor_math::ring::*;
/// # use feanor_math::homomorphism::*;
/// # use feanor_math::primitive_int::*;
/// # use feanor_math::integer::*;
/// let R = StaticRing::<i64>::RING;
/// let S = BigIntRing::RING;
/// let eight = S.int_hom().map(8);
/// // on RingBase level
/// let hom = R.get_ring().has_canonical_hom(S.get_ring()).unwrap();
/// assert_eq!(8, R.get_ring().map_in(S.get_ring(), S.clone_el(&eight), &hom));
/// // on RingStore level
/// assert_eq!(8, R.coerce(&S, S.clone_el(&eight)));
/// // or
/// let hom = R.can_hom(&S).unwrap();
/// assert_eq!(8, hom.map_ref(&eight));
/// ```
/// 
/// # Limitations
/// 
/// The rust constraints regarding conflicting impl make it, in some cases,
/// impossible to implement all the canonical homomorphisms that we would like.
/// This is true in particular, if the rings are highly generic, and build
/// on base rings. In this case, it should always be preferred to implement
/// `CanIsoFromTo` for rings that are "the same", and on the other hand not
/// to implement classical homomorphisms, like `ZZ -> R` which exists for any
/// ring R. In applicable cases, consider also implementing [`RingExtension`].
/// 
/// Because of this reason, implementing [`RingExtension`] also does not require
/// an implementation of `CanHomFrom<Self::BaseRing>`. Hence, if you as a user
/// miss a certain implementation of `CanHomFrom`, check whether there maybe
/// is a corresponding implementation of [`RingExtension`], or a member function.
/// 
/// # More examples
/// 
/// ## Integer rings
/// 
/// All given integer rings have canonical isomorphisms between each other.
/// ```
/// # use feanor_math::ring::*;
/// # use feanor_math::integer::*;
/// # use feanor_math::primitive_int::*;
/// # use feanor_math::integer::*;
/// let Z_i8 = StaticRing::<i8>::RING;
/// let Z_i32 = StaticRing::<i32>::RING;
/// let Z_i128 = StaticRing::<i128>::RING;
/// let Z_big = BigIntRing::RING;
/// 
/// assert!(Z_i8.can_iso(&Z_i8).is_some());
/// assert!(Z_i8.can_iso(&Z_i32).is_some());
/// assert!(Z_i8.can_iso(&Z_i128).is_some());
/// assert!(Z_i8.can_iso(&Z_big).is_some());
/// 
/// assert!(Z_i32.can_iso(&Z_i8).is_some());
/// assert!(Z_i32.can_iso(&Z_i32).is_some());
/// assert!(Z_i32.can_iso(&Z_i128).is_some());
/// assert!(Z_i32.can_iso(&Z_big).is_some());
/// 
/// assert!(Z_i128.can_iso(&Z_i8).is_some());
/// assert!(Z_i128.can_iso(&Z_i32).is_some());
/// assert!(Z_i128.can_iso(&Z_i128).is_some());
/// assert!(Z_i128.can_iso(&Z_big).is_some());
/// 
/// assert!(Z_big.can_iso(&Z_i8).is_some());
/// assert!(Z_big.can_iso(&Z_i32).is_some());
/// assert!(Z_big.can_iso(&Z_i128).is_some());
/// assert!(Z_big.can_iso(&Z_big).is_some());
/// ```
/// 
/// ## Integer quotient rings `Z/nZ`
/// 
/// Due to conflicting implementations, only the most useful conversions
/// are implemented for `Z/nZ`.
/// ```
/// # use feanor_math::ring::*;
/// # use feanor_math::primitive_int::*;
/// # use feanor_math::homomorphism::*;
/// # use feanor_math::integer::*;
/// # use feanor_math::rings::zn::*;
/// # use feanor_math::rings::zn::zn_42;
/// # use feanor_math::rings::zn::zn_barett;
/// # use feanor_math::rings::zn::zn_rns;
/// 
/// let ZZ = StaticRing::<i128>::RING;
/// let ZZ_big = BigIntRing::RING;
/// 
/// let Zn_barett_i128 = zn_barett::Zn::new(ZZ, 17 * 257);
/// let Zn_barett_big = zn_barett::Zn::new(ZZ_big, ZZ_big.int_hom().map(17 * 257));
/// let Zn_std = zn_42::Zn::new(17 * 257);
/// let Zn_rns = zn_rns::Zn::from_primes(ZZ_big, vec![17, 257]);
/// 
/// assert!(Zn_barett_i128.can_iso(&Zn_barett_i128).is_some());
/// assert!(Zn_barett_i128.can_iso(&Zn_barett_big).is_some());
/// 
/// assert!(Zn_barett_big.can_iso(&Zn_barett_i128).is_some());
/// assert!(Zn_barett_big.can_iso(&Zn_barett_big).is_some());
/// 
/// assert!(Zn_std.can_iso(&Zn_barett_i128).is_some());
/// assert!(Zn_std.can_iso(&Zn_std).is_some());
/// 
/// assert!(Zn_rns.can_iso(&Zn_barett_i128).is_some());
/// assert!(Zn_rns.can_iso(&Zn_barett_big).is_some());
/// assert!(Zn_rns.can_iso(&Zn_rns).is_some());
/// ```
/// Additionally, there are the projections `Z -> Z/nZ`.
/// They are all implemented, even though [`crate::rings::zn::ZnRing`] currently
/// only requires the projection from the "associated" integer ring.
/// ```
/// # use feanor_math::ring::*;
    /// # use feanor_math::homomorphism::*;
/// # use feanor_math::primitive_int::*;
/// # use feanor_math::integer::*;
/// # use feanor_math::rings::zn::*;
/// 
/// let ZZ = StaticRing::<i128>::RING;
/// let ZZ_big = BigIntRing::RING;
/// 
/// let Zn_barett_i128 = zn_barett::Zn::new(ZZ, 17 * 257);
/// let Zn_barett_big = zn_barett::Zn::new(ZZ_big, ZZ_big.int_hom().map(17 * 257));
/// let Zn_std = zn_42::Zn::new(17 * 257);
/// let Zn_rns = zn_rns::Zn::from_primes(ZZ_big, vec![17, 257]);
/// 
/// assert!(Zn_barett_i128.can_hom(&ZZ).is_some());
/// assert!(Zn_barett_i128.can_hom(&ZZ_big).is_some());
/// 
/// assert!(Zn_barett_big.can_hom(&ZZ).is_some());
/// assert!(Zn_barett_big.can_hom(&ZZ_big).is_some());
/// 
/// assert!(Zn_std.can_hom(&ZZ).is_some());
/// assert!(Zn_std.can_hom(&ZZ_big).is_some());
/// 
/// assert!(Zn_rns.can_hom(&ZZ).is_some());
/// assert!(Zn_rns.can_hom(&ZZ_big).is_some());
/// ```
/// 
/// ## Polynomial Rings
/// 
/// For the two provided univariate polynomial ring implementations, we have the isomorphisms
/// ```
/// # use feanor_math::ring::*;
/// # use feanor_math::primitive_int::*;
/// # use feanor_math::integer::*;
/// # use feanor_math::rings::poly::*;
/// 
/// let ZZ = StaticRing::<i128>::RING;
/// let P_dense = dense_poly::DensePolyRing::new(ZZ, "X");
/// let P_sparse = sparse_poly::SparsePolyRing::new(ZZ, "X");
/// 
/// assert!(P_dense.can_iso(&P_dense).is_some());
/// assert!(P_dense.can_iso(&P_sparse).is_some());
/// assert!(P_sparse.can_iso(&P_dense).is_some());
/// assert!(P_sparse.can_iso(&P_sparse).is_some());
/// ```
/// Unfortunately, the inclusions `R -> R[X]` are not implemented as canonical homomorphisms,
/// however provided by the functions of [`RingExtension`].
/// 
pub trait CanHomFrom<S>: RingBase
    where S: RingBase + ?Sized
{
    type Homomorphism;

    fn has_canonical_hom(&self, from: &S) -> Option<Self::Homomorphism>;
    fn map_in(&self, from: &S, el: S::Element, hom: &Self::Homomorphism) -> Self::Element;

    fn map_in_ref(&self, from: &S, el: &S::Element, hom: &Self::Homomorphism) -> Self::Element {
        self.map_in(from, from.clone_el(el), hom)
    }

    fn mul_assign_map_in(&self, from: &S, lhs: &mut Self::Element, rhs: S::Element, hom: &Self::Homomorphism) {
        self.mul_assign(lhs, self.map_in(from, rhs, hom));
    }

    fn mul_assign_map_in_ref(&self, from: &S, lhs: &mut Self::Element, rhs: &S::Element, hom: &Self::Homomorphism) {
        self.mul_assign(lhs, self.map_in_ref(from, rhs, hom));
    }
}

///
/// Trait for rings R that have a canonical isomorphism `S -> R`.
/// A ring homomorphism is expected to be unital.
/// 
/// I am currently thinking about removing this trait entirely.
/// 
/// # Exact requirements
/// 
/// Same as for [`CanHomFrom`], it is up to implementors to decide which
/// isomorphisms are canonical, as long as each diagram that contains
/// only canonical homomorphisms, canonical isomorphisms and their inverses
/// commutes.
/// In other words, if there are rings `R, S` and "intermediate rings"
/// `R1, ..., Rn` resp. `R1', ..., Rm'` such that there are canonical
/// homomorphisms `->` or isomorphisms `<~>` connecting them - e.g. like
/// ```text
/// S -> R1 -> R2 <~> R3 <~> R4 -> ... -> Rn -> R
/// ```
/// and
/// ```text
/// S <~> R1' -> R2' -> ... -> Rm' -> R
/// ```
/// then both chains should yield same results on same inputs.
/// 
/// Hence, it would be natural if the trait were symmetrical, i.e.
/// for any implementation `R: CanIsoFromTo<S>` there is also an
/// implementation `S: CanIsoFromTo<R>`. However, because of the trait
/// impl constraints of Rust, this is unpracticable and so we only
/// require the implementation `R: CanHomFrom<S>`.
/// 
pub trait CanIsoFromTo<S>: CanHomFrom<S>
    where S: RingBase + ?Sized
{
    type Isomorphism;

    fn has_canonical_iso(&self, from: &S) -> Option<Self::Isomorphism>;
    fn map_out(&self, from: &S, el: Self::Element, iso: &Self::Isomorphism) -> S::Element;
}

///
/// Basically an alias for `CanIsoFromTo<Self>`, but implemented as new
/// trait since trait aliases are not available.
/// 
pub trait SelfIso: CanIsoFromTo<Self> {}

impl<R: ?Sized + CanIsoFromTo<R>> SelfIso for R {}

///
/// A high-level wrapper of [`CanHomFrom::Homomorphism`] that references the
/// domain and codomain rings, and is much easier to use.
/// 
/// # Example
/// ```
/// # use feanor_math::ring::*;
/// # use feanor_math::homomorphism::*;
/// # use feanor_math::homomorphism::*;
/// # use feanor_math::primitive_int::*;
/// let from = StaticRing::<i32>::RING;
/// let to = StaticRing::<i64>::RING;
/// let hom = to.can_hom(&from).unwrap();
/// assert_eq!(7, hom.map(7));
/// // instead of
/// let hom = to.get_ring().has_canonical_hom(from.get_ring()).unwrap();
/// assert_eq!(7, to.get_ring().map_in(from.get_ring(), 7, &hom));
/// ```
/// 
/// # See also
/// The "bi-directional" variant [`CanHom`], the basic interfaces [`CanHomFrom`] and
/// [`CanIsoFromTo`] and the very simplified functions [`RingStore::coerce`], [`RingStore::coerce_ref`]
/// and [`RingStore::cast`].
/// 
pub struct CanHom<R, S>
    where R: RingStore, S: RingStore, S::Type: CanHomFrom<R::Type>
{
    from: R,
    to: S,
    data: <S::Type as CanHomFrom<R::Type>>::Homomorphism
}

impl<R, S> CanHom<R, S>
    where R: RingStore, S: RingStore, S::Type: CanHomFrom<R::Type>
{
    pub fn new(from: R, to: S) -> Result<Self, (R, S)> {
        match to.get_ring().has_canonical_hom(from.get_ring()) {
            Some(data) => Ok(Self { from, to, data }),
            _ => Err((from, to))
        }
    }

    pub fn raw_hom(&self) -> &<S::Type as CanHomFrom<R::Type>>::Homomorphism {
        &self.data
    }
}

impl<R, S> Homomorphism<R::Type, S::Type> for CanHom<R, S>
    where R: RingStore, S: RingStore, S::Type: CanHomFrom<R::Type>
{
    type CodomainStore = S;
    type DomainStore = R;

    fn map(&self, el: El<R>) -> El<S> {
        self.to.get_ring().map_in(self.from.get_ring(), el, &self.data)
    }

    fn map_ref(&self, el: &El<R>) -> El<S> {
        self.to.get_ring().map_in_ref(self.from.get_ring(), el, &self.data)
    }
    
    fn domain(&self) -> &R {
        &self.from
    }

    fn codomain(&self) -> &S {
        &self.to
    }
}

///
/// A wrapper around [`CanIsoFromTo::Isomorphism`] that references the domain and
/// codomain rings, making it much easier to use. This also contains the homomorphism
/// in the other direction, i.e. allows mapping in both directions.
/// 
/// # Example
/// ```
/// # use feanor_math::ring::*;
/// # use feanor_math::homomorphism::*;
/// # use feanor_math::primitive_int::*;
/// 
/// let from = StaticRing::<i32>::RING;
/// let to = StaticRing::<i64>::RING;
/// let hom = to.can_iso(&from).unwrap();
/// assert_eq!(7, hom.map(7));
/// // instead of
/// let hom = to.get_ring().has_canonical_iso(from.get_ring()).unwrap();
/// assert_eq!(7, from.get_ring().map_out(to.get_ring(), 7, &hom));
/// ```
/// 
/// # See also
/// The "one-directional" variant [`CanHom`], the basic interfaces [`CanHomFrom`] and
/// [`CanIsoFromTo`] and the very simplified functions [`RingStore::coerce`], [`RingStore::coerce_ref`]
/// and [`RingStore::cast`].
/// 
pub struct CanIso<R, S>
    where R: RingStore, S: RingStore, S::Type: CanIsoFromTo<R::Type>
{
    from: R,
    to: S,
    data: <S::Type as CanIsoFromTo<R::Type>>::Isomorphism
}

impl<R, S> CanIso<R, S>
    where R: RingStore, S: RingStore, S::Type: CanIsoFromTo<R::Type>
{
    pub fn new(from: R, to: S) -> Result<Self, (R, S)> {
        match to.get_ring().has_canonical_iso(from.get_ring()) {
            Some(data) => {
                assert!(to.get_ring().has_canonical_hom(from.get_ring()).is_some());
                Ok(Self { from, to, data })
            },
            _ => Err((from, to))
        }
    }

    pub fn inv<'a>(&'a self) -> CanHom<&'a R, &'a S> {
        CanHom::new(&self.from, &self.to).unwrap_or_else(|_| unreachable!())
    }

    pub fn raw_iso(&self) -> &<S::Type as CanIsoFromTo<R::Type>>::Isomorphism {
        &self.data
    }
}

impl<R, S> Homomorphism<S::Type,R::Type> for CanIso<R, S>
    where R: RingStore, S: RingStore, S::Type: CanIsoFromTo<R::Type>
{
    type DomainStore = S;
    type CodomainStore = R;
    
    fn map(&self, x: El<S>) -> El<R> {
        self.to.get_ring().map_out(self.from.get_ring(), x, &self.data)
    }

    fn domain(&self) -> &S {
        &self.to
    }

    fn codomain(&self) -> &R {
        &self.from
    }
}

///
/// The ring homomorphism induced by a [`RingExtension`].
/// 
/// # Example
/// ```
/// # use feanor_math::assert_el_eq;
/// # use feanor_math::ring::*;
/// # use feanor_math::primitive_int::*;
/// # use feanor_math::homomorphism::*;
/// # use feanor_math::rings::poly::*;
/// let base = StaticRing::<i32>::RING;
/// let extension = dense_poly::DensePolyRing::new(base, "X");
/// let hom = extension.inclusion();
/// let f = extension.add(hom.map(8), extension.indeterminate());
/// assert_el_eq!(&extension, &extension.from_terms([(8, 0), (1, 1)].into_iter()), &f);
/// ```
/// 
pub struct Inclusion<R>
    where R: RingStore, R::Type: RingExtension
{
    ring: R
}

impl<R>  Inclusion<R>
    where R: RingStore, R::Type: RingExtension
{
    pub fn new(ring: R) -> Self {
        Inclusion { ring }
    }
}
    
impl<R> Homomorphism<<<R::Type as RingExtension>::BaseRing as RingStore>::Type, R::Type> for Inclusion<R>
    where R: RingStore, R::Type: RingExtension
{
    type CodomainStore = R;
    type DomainStore = <R::Type as RingExtension>::BaseRing;

    fn domain<'a>(&'a self) -> &'a Self::DomainStore {
        self.ring.base_ring()
    }

    fn codomain<'a>(&'a self) -> &'a Self::CodomainStore {
        &self.ring
    }

    fn map(&self, x: <<<R::Type as RingExtension>::BaseRing as RingStore>::Type as RingBase>::Element) -> <R::Type as RingBase>::Element {
        self.ring.get_ring().from(x)
    }

    fn map_ref(&self, x: &<<<R::Type as RingExtension>::BaseRing as RingStore>::Type as RingBase>::Element) -> <R::Type as RingBase>::Element {
        self.ring.get_ring().from_ref(x)
    }

    fn mul_assign_map_ref(&self, lhs: &mut <R::Type as RingBase>::Element, rhs: &<<<R::Type as RingExtension>::BaseRing as RingStore>::Type as RingBase>::Element) {
        self.ring.get_ring().mul_assign_base(lhs, rhs)
    }

    fn mul_assign_map(&self, lhs: &mut <R::Type as RingBase>::Element, rhs: <<<R::Type as RingExtension>::BaseRing as RingStore>::Type as RingBase>::Element) {
        self.mul_assign_map_ref(lhs, &rhs)
    }
}

///
/// The ring homomorphism `Z -> R` that exists for any ring `R`.
/// 
/// # Example
/// ```
/// # use feanor_math::assert_el_eq;
/// # use feanor_math::ring::*;
/// # use feanor_math::primitive_int::*;
/// # use feanor_math::homomorphism::*;
/// # use feanor_math::rings::zn::*;
/// let ring = zn_static::F17;
/// let hom = ring.int_hom();
/// assert_el_eq!(&ring, &hom.map(1), &hom.map(18));
/// ```
/// 
#[derive(Clone, Copy)]
pub struct IntHom<R>
    where R: RingStore
{
    ring: R
}

impl<R> Homomorphism<StaticRingBase<i32>, R::Type> for IntHom<R>
    where R: RingStore
{
    type CodomainStore = R;
    type DomainStore = StaticRing<i32>;

    fn domain<'a>(&'a self) -> &'a Self::DomainStore {
        &StaticRing::<i32>::RING
    }

    fn codomain<'a>(&'a self) -> &'a Self::CodomainStore {
        &self.ring
    }

    fn map(&self, x: i32) -> <R::Type as RingBase>::Element {
        self.ring.get_ring().from_int(x)
    }

    fn mul_assign_map(&self, lhs: &mut <R::Type as RingBase>::Element, rhs: i32) {
        self.ring.get_ring().mul_assign_int(lhs, rhs)
    }

    fn mul_assign_map_ref(&self, lhs: &mut <R::Type as RingBase>::Element, rhs: &<StaticRingBase<i32> as RingBase>::Element) {
        self.mul_assign_map(lhs, *rhs)
    }
}

impl<R> IntHom<R>
    where R: RingStore
{
    pub fn new(ring: R) -> Self {
        Self { ring }
    }
}

#[derive(Clone, Copy)]
pub struct Identity<R: RingStore> {
    ring: R
}

impl<R: RingStore> Identity<R> {

    pub fn new(ring: R) -> Self {
        Identity { ring }
    }
}

impl<R: RingStore> Homomorphism<R::Type, R::Type> for Identity<R> {

    type CodomainStore = R;
    type DomainStore = R;

    fn codomain<'a>(&'a self) -> &'a Self::CodomainStore {
        &self.ring
    }

    fn domain<'a>(&'a self) -> &'a Self::DomainStore {
        &self.ring
    }

    fn map(&self, x: <R::Type as RingBase>::Element) -> <R::Type as RingBase>::Element {
        x
    }
}

impl<'a, S, R, H> Homomorphism<S, R> for &'a H 
    where S: ?Sized + RingBase, R: ?Sized + RingBase, H: Homomorphism<S, R>
{
    type CodomainStore = H::CodomainStore;
    type DomainStore = H::DomainStore;

    fn codomain<'b>(&'b self) -> &'b Self::CodomainStore {
        (*self).codomain()
    }

    fn domain<'b>(&'b self) -> &'b Self::DomainStore {
        (*self).domain()
    }

    fn map(&self, x: <S as RingBase>::Element) -> <R as RingBase>::Element {
        (*self).map(x)
    }

    fn map_ref(&self, x: &<S as RingBase>::Element) -> <R as RingBase>::Element {
        (*self).map_ref(x)
    }

    fn mul_assign_map(&self, lhs: &mut <R as RingBase>::Element, rhs: <S as RingBase>::Element) {
        (*self).mul_assign_map(lhs, rhs)
    }

    fn mul_assign_map_ref(&self, lhs: &mut <R as RingBase>::Element, rhs: &<S as RingBase>::Element) {
        (*self).mul_assign_map_ref(lhs, rhs)
    }
}

#[derive(Clone, Copy)]
pub struct LambdaHom<R: RingStore, S: RingStore, F>
    where F: Fn(&R, &S, &El<R>) -> El<S>
{
    from: R,
    to: S,
    f: F
}

impl<R: RingStore, S: RingStore, F> LambdaHom<R, S, F>
    where F: Fn(&R, &S, &El<R>) -> El<S>
{
    pub fn new(from: R, to: S, f: F) -> Self {
        Self { from, to, f }
    }
}

impl<R: RingStore, S: RingStore, F> Homomorphism<R::Type, S::Type> for LambdaHom<R, S, F>
    where F: Fn(&R, &S, &El<R>) -> El<S>
{
    type CodomainStore = S;
    type DomainStore = R;

    fn codomain<'a>(&'a self) -> &'a Self::CodomainStore {
        &self.to
    }

    fn domain<'a>(&'a self) -> &'a Self::DomainStore {
        &self.from
    }

    fn map(&self, x: <R::Type as RingBase>::Element) -> <S::Type as RingBase>::Element {
        (self.f)(self.domain(), self.codomain(), &x)
    }

    fn map_ref(&self, x: &<R::Type as RingBase>::Element) -> <S::Type as RingBase>::Element {
        (self.f)(self.domain(), self.codomain(), x)
    }
}

pub struct ComposedHom<R, S, T, F, G>
    where F: Homomorphism<R, S>,
        G: Homomorphism<S, T>,
        R: ?Sized + RingBase,
        S: ?Sized + RingBase,
        T: ?Sized + RingBase
{
    f: F,
    g: G,
    domain: PhantomData<R>,
    intermediate: PhantomData<S>,
    codomain: PhantomData<T>
}

impl<R, S, T, F, G> Clone for ComposedHom<R, S, T, F, G>
    where F: Clone + Homomorphism<R, S>,
        G: Clone + Homomorphism<S, T>,
        R: ?Sized + RingBase,
        S: ?Sized + RingBase,
        T: ?Sized + RingBase
{
    fn clone(&self) -> Self {
        Self {
            f: self.f.clone(),
            g: self.g.clone(),
            domain: PhantomData,
            codomain: PhantomData,
            intermediate: PhantomData
        }
    }
}

impl<R, S, T, F, G> Copy for ComposedHom<R, S, T, F, G>
    where F: Copy + Homomorphism<R, S>,
        G: Copy + Homomorphism<S, T>,
        R: ?Sized + RingBase,
        S: ?Sized + RingBase,
        T: ?Sized + RingBase
{}

impl<R, S, T, F, G> Homomorphism<R, T> for ComposedHom<R, S, T, F, G>
    where F: Homomorphism<R, S>,
        G: Homomorphism<S, T>,
        R: ?Sized + RingBase,
        S: ?Sized + RingBase,
        T: ?Sized + RingBase
{
    type DomainStore = <F as Homomorphism<R, S>>::DomainStore;
    type CodomainStore = <G as Homomorphism<S, T>>::CodomainStore;

    fn domain<'a>(&'a self) -> &'a Self::DomainStore {
        self.f.domain()
    }

    fn codomain<'a>(&'a self) -> &'a Self::CodomainStore {
        self.g.codomain()
    }

    fn map(&self, x: <R as RingBase>::Element) -> <T as RingBase>::Element {
        self.g.map(self.f.map(x))
    }

    fn map_ref(&self, x: &<R as RingBase>::Element) -> <T as RingBase>::Element {
        self.g.map(self.f.map_ref(x))
    }

    fn mul_assign_map(&self, lhs: &mut <T as RingBase>::Element, rhs: <R as RingBase>::Element) {
        self.g.mul_assign_map(lhs, self.f.map(rhs))
    }

    fn mul_assign_map_ref(&self, lhs: &mut <T as RingBase>::Element, rhs: &<R as RingBase>::Element) {
        self.g.mul_assign_map(lhs, self.f.map_ref(rhs))
    }
}

///
/// Implements the trivial canonical isomorphism `Self: CanIsoFromTo<Self>` for the
/// given type. 
/// 
/// Note that this does not support generic types, as for those, it is
/// usually better to implement
/// ```rust,ignore
/// RingConstructor<R>: CanIsoFromTo<RingConstructor<S>>
///     where R: CanIsoFromTo<S>
/// ```
/// or something similar.
/// 
/// # Example
/// ```
/// # use feanor_math::ring::*;
/// # use feanor_math::homomorphism::*;
/// # use feanor_math::primitive_int::*;
/// # use feanor_math::delegate::*;
/// # use feanor_math::{assert_el_eq, impl_eq_based_self_iso};
/// 
/// #[derive(PartialEq, Clone, Copy)]
/// struct MyI32Ring;
/// 
/// impl DelegateRing for MyI32Ring {
/// 
///     type Base = StaticRingBase<i32>;
///     type Element = i32;
/// 
///     fn get_delegate(&self) -> &Self::Base {
///         StaticRing::<i32>::RING.get_ring()
///     }
/// 
///     fn delegate_ref<'a>(&self, el: &'a i32) -> &'a i32 {
///         el
///     }
/// 
///     fn delegate_mut<'a>(&self, el: &'a mut i32) -> &'a mut i32 {
///         el
///     }
/// 
///     fn delegate(&self, el: i32) -> i32 {
///         el
///     }
/// 
///     fn postprocess_delegate_mut(&self, _: &mut i32) {
///         // sometimes it might be necessary to fix some data of `Self::Element`
///         // if the underlying `Self::Base::Element` was modified via `delegate_mut()`;
///         // this is not the case here, so leave empty
///     }
/// 
///     fn rev_delegate(&self, el: i32) -> i32 {
///         el
///     }
/// }
/// 
/// // since we provide `PartialEq`, the trait `CanIsoFromTo<Self>` is trivial
/// // to implement
/// impl_eq_based_self_iso!{ MyI32Ring }
/// 
/// let ring = RingValue::from(MyI32Ring);
/// assert_el_eq!(&ring, &ring.int_hom().map(1), &ring.one());
/// ```
/// 
#[macro_export]
macro_rules! impl_eq_based_self_iso {
    ($type:ty) => {
        impl $crate::homomorphism::CanHomFrom<Self> for $type {

            type Homomorphism = ();

            fn has_canonical_hom(&self, from: &Self) -> Option<()> {
                if self == from {
                    Some(())
                } else {
                    None
                }
            }

            fn map_in(&self, _from: &Self, el: <Self as $crate::ring::RingBase>::Element, _: &Self::Homomorphism) -> <Self as $crate::ring::RingBase>::Element {
                el
            }
        }
        
        impl $crate::homomorphism::CanIsoFromTo<Self> for $type {

            type Isomorphism = ();

            fn has_canonical_iso(&self, from: &Self) -> Option<()> {
                if self == from {
                    Some(())
                } else {
                    None
                }
            }

            fn map_out(&self, _from: &Self, el: <Self as $crate::ring::RingBase>::Element, _: &Self::Homomorphism) -> <Self as $crate::ring::RingBase>::Element {
                el
            }
        }
    };
}

#[cfg(any(test, feature = "generic_tests"))]
pub mod generic_tests {

    use super::*;

    pub fn test_homomorphism_axioms<R: ?Sized + RingBase, S: ?Sized + RingBase, H, I: Iterator<Item = R::Element>>(hom: H, edge_case_elements: I)
        where H: Homomorphism<R, S>
    {
        let from = hom.domain();
        let to = hom.codomain();
        let elements = edge_case_elements.collect::<Vec<_>>();

        for a in &elements {
            for b in &elements {
                {
                    let map_a = hom.map_ref(a);
                    let map_b = hom.map_ref(b);
                    let map_sum = to.add_ref(&map_a, &map_b);
                    let sum_map = hom.map(from.add_ref(a, b));
                    assert!(to.eq_el(&map_sum, &sum_map), "Additive homomorphic property failed: hom({} + {}) = {} != {} = {} + {}", from.format(a), from.format(b), to.format(&sum_map), to.format(&map_sum), to.format(&map_a), to.format(&map_b));
                }
                {
                    let map_a = hom.map_ref(a);
                    let map_b = hom.map_ref(b);
                    let map_prod = to.mul_ref(&map_a, &map_b);
                    let prod_map = hom.map(from.mul_ref(a, b));
                    assert!(to.eq_el(&map_prod, &prod_map), "Multiplicative homomorphic property failed: hom({} * {}) = {} != {} = {} * {}", from.format(a), from.format(b), to.format(&prod_map), to.format(&map_prod), to.format(&map_a), to.format(&map_b));
                }
                {
                    let map_a = hom.map_ref(a);
                    let prod_map = hom.map(from.mul_ref(a, b));
                    let mut mul_assign = to.clone_el(&map_a);
                    hom.mul_assign_map_ref( &mut mul_assign, b);
                    assert!(to.eq_el(&mul_assign, &prod_map), "mul_assign_map_ref() failed: hom({} * {}) = {} != {} = mul_map_in(hom({}), {})", from.format(a), from.format(b), to.format(&prod_map), to.format(&mul_assign), to.format(&map_a), from.format(b));
                }
            }
        }
    }
}