1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
use std::{marker::PhantomData, ops::Range};

use crate::ring::{RingStore, RingBase};

use super::{VectorView, map::MapFn, subvector::{SelfSubvectorView, SelfSubvectorFn}};

///
/// A trait for objects that have the structure of a one-dimensional array,
/// and can produce objects at each entry. In other words, this is like a 
/// "random-access iterator".
/// 
/// In my experience, in most cases, you want to use [`std::iter::ExactSizeIterator`] instead.
/// 
/// # Related traits
/// 
/// If the entries are owned by the object, consider using the trait [crate::vector::VectorView].
/// Instead of returning entries by value, it returns entries by reference. Otherwise, it is often
/// better to use an [`std::iter::ExactSizeIterator`], as it allows move-semantics and can avoid
/// cloning (if random access is not necessary).
/// 
/// # Blanket implementations
/// 
/// There are many kinds of blanket implementations thinkable, e.g.
/// ```rust,ignore
/// impl<T: Clone, V> VectorFn<T> for VectorView<T> { ... }
/// ```
/// or
/// ```rust,ignore
/// impl<'a, T, V> VectorFn<&'a T> for &'a VectorView<T> { ... }
/// ```
/// However, these do not represent the standard use cases and clutter the space of
/// possible implementations. Instead, use the function [`crate::vector::vec_fn::IntoVectorFn::into_fn()`].
/// 
pub trait VectorFn<T> {
    
    fn len(&self) -> usize;
    fn at(&self, i: usize) -> T;

    fn map<U, F: Fn(T) -> U>(self, f: F) -> MapFn<Self, F, T>
        where Self: Sized
    {
        MapFn::new(self, f)
    }

    fn to_vec(&self) -> Vec<T> {
        Iterator::map(0..self.len(), |i| self.at(i)).collect()
    }
}

pub trait IntoVectorFn<T> {

    type Target: VectorFn<T>;

    fn into_fn(self) -> Self::Target;
}

pub struct VectorViewFn<V, T>
    where T: Clone,
        V: VectorView<T>
{
    base: V,
    element: PhantomData<T>
}

impl<V, T> VectorViewFn<V, T>
    where T: Clone,
        V: VectorView<T>
{
    pub fn new(base: V) -> Self {
        VectorViewFn { base: base, element: PhantomData }
    }
}

impl<V, T> SelfSubvectorFn<T> for VectorViewFn<V, T>
    where T: Clone,
        V: SelfSubvectorView<T>
{
    fn subvector<R: std::ops::RangeBounds<usize>>(self, range: R) -> Self {
        VectorViewFn { base: self.base.subvector(range), element: PhantomData }
    }
}

impl<V, T> VectorFn<T> for VectorViewFn<V, T>
    where T: Clone,
        V: VectorView<T>
{
    fn at(&self, i: usize) -> T {
        self.base.at(i).clone()
    }

    fn len(&self) -> usize {
        self.base.len()
    }
}

impl<V, T> Clone for VectorViewFn<V, T>
    where T: Clone,
        V: Clone + VectorView<T>
{
    fn clone(&self) -> Self {
        Self::new(self.base.clone())
    }
}

impl<V, T> Copy for VectorViewFn<V, T>
    where T: Clone,
        V: Copy + VectorView<T>
{}

impl<'a, T, V: ?Sized> VectorFn<T> for &'a V 
    where V: VectorFn<T>
{
    fn len(&self) -> usize {
        V::len(*self)
    }

    fn at(&self, i: usize) -> T {
        V::at(*self, i)
    }
}

impl<'a, T, V: ?Sized> VectorFn<T> for &'a mut V 
    where V: VectorFn<T>
{
    fn len(&self) -> usize {
        V::len(*self)
    }

    fn at(&self, i: usize) -> T {
        V::at(*self, i)
    }
}

pub struct RingElVectorViewFn<R, V, T>
    where R: RingStore,
        R::Type: RingBase<Element = T>,
        V: VectorView<T>
{
    ring: R,
    base: V,
    element: PhantomData<T>
}

impl<R, V, T> RingElVectorViewFn<R, V, T>
    where R: RingStore,
        R::Type: RingBase<Element = T>,
        V: VectorView<T>
{
    pub fn new(base: V, ring: R) -> Self {
        RingElVectorViewFn { ring: ring, base: base, element: PhantomData }
    }
}

impl<R, V, T> SelfSubvectorFn<T> for RingElVectorViewFn<R, V, T>
    where R: RingStore,
        R::Type: RingBase<Element = T>,
        V: SelfSubvectorView<T>
{
    fn subvector<S: std::ops::RangeBounds<usize>>(self, range: S) -> Self {
        RingElVectorViewFn { ring: self.ring, base: self.base.subvector(range), element: PhantomData }
    }
}

impl<R, V, T> VectorFn<T> for RingElVectorViewFn<R, V, T>
    where R: RingStore,
        R::Type: RingBase<Element = T>,
        V: VectorView<T>
{
    fn at(&self, i: usize) -> T {
        self.ring.clone_el(self.base.at(i))
    }

    fn len(&self) -> usize {
        self.base.len()
    }
}

impl<R, V, T> Clone for RingElVectorViewFn<R, V, T>
    where R: Clone + RingStore,
        R::Type: RingBase<Element = T>,
        V: Clone + VectorView<T>
{
    fn clone(&self) -> Self {
        Self::new(self.base.clone(), self.ring.clone())
    }
}

impl<R, V, T> Copy for RingElVectorViewFn<R, V, T>
    where R: Copy + RingStore,
        R::Type: RingBase<Element = T>,
        V: Copy + VectorView<T>
{}

pub struct RangeFn(Range<usize>);

impl IntoVectorFn<usize> for Range<usize> {

    type Target = RangeFn;

    fn into_fn(self) -> Self::Target {
        RangeFn(self)
    }
}

impl VectorFn<usize> for RangeFn {

    fn len(&self) -> usize {
        self.0.end - self.0.start
    }

    fn at(&self, i: usize) -> usize {
        assert!(i >= self.0.start && i < self.0.end);
        return i;
    }
}

impl<T, V> IntoVectorFn<T> for V
    where T: Clone, V: VectorView<T>
{
    type Target = VectorViewFn<V, T>;

    fn into_fn(self) -> Self::Target {
        VectorViewFn::new(self)
    }
}